Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 33; 36; 39; 42; 45.
b) 8; 6; 4; 2; 0.
c) 19; 21; 23; 25; 27; 29.
A, xin lỗi nha, mình nhìn nhầm đề bài:
Gọi 2 số hạng đầu của các dãy là a và b.
a) ...; 39; 42; 45. = ( 45 - a ) : 3 + 1 = 15
( 45 - a ) : 3 = 15 - 1
45 - a = 14 x 3
45 - a = 42
a = 45 - 42
a = 3
=> b = 3 + 3 = 6
Vậy 2 số hạng đầu tiên của dãy là 3 và 6.
b) ...; 4; 2; 0. = ( a - 0 ) : 2 + 1 = 15
( a - 0 ) : 2 = 15 - 1
a - 0 = 14 x 2
a - 0 = 28
a = 28 + 0
a = 28
=> b = 28 - 2 = 26
Vậy 2 số hạng đầu tiên của dãy là 28 và 26.
c) ...; 23; 25; 27; 29. = ( 29 - a ) : 2 + 1 = 15
( 29 - a ) : 2 = 15 - 1
29 - a = 14 x 2
29 - a = 28
a = 29 - 28
a = 1
=> b = 1 + 2 = 3
Vậy 2 số hạng đầu tiên của dãy là 1 và 3.
~ Mình nghĩ cách làm như thế này mới đúng nè ~
a) Số hạng đầu tiên của dãy số đó là: 45 - ( 14 * 3) = 3
b) " : 2 * 15 - 2 = 28
Chúc bạn học tốt ^^!
a) 3;6
b)28;26
c)-1 ; 1 ( số âm thật nha , ko tin áp dụng công thức : số cuối -( số số hạng - 1 ) . khoảng cách giữa 2 số . ko thì mò tay cũng ra )
...; 39; 42; 45
Dãy số trên là dãy số cách đều với khoảng cách là: 42 - 39 = 3
Số đầu tiên của dãy số là: 45 - 3 x (15 - 1) = 3
Số thứ hai của dãy số là: 3 + 3 = 6
Đáp só: Số thứ nhất là 3
Số thứ hai là 6
Tương tự như trên ta rút ra quy luật của dãy là : Mỗi số hạng bằng số thứ tự nhân số thứ tự của số hạng đó.
Vậy số hạng đầu tiên của dãy là : 1 x 1 = 1
Ta nhận xét :
Số hạng thứ mười là
21 = 2 x 10 + 1
Số hạng thứ chín là :
19 = 2 x 9 + 1
Số hạng thứ tám là :
17 = 2 x 8 + 1
. . .
Từ đó suy ra quy luật của dãy số trên là : Mỗi số hạng của dãy bằng 2 x thứ tự của số hạng trong dãy rồi cộng với 1.
Vậy số hạng đầu tiên của dãy là: 2 x 1 + 1 = 3
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
Tìm 2 số hạng đứng đầu của dãy số sau ......;.......;......;175;183 (biết dãy số trên có 20 số hạng)
Là 7 đó nha
Các bạn ủng hộ cho tớ đi !!!!!!!!!!!!!!!!!!
Dãy số có quy luật sau: số đầu cộng 2 được số sau và số sau cứ cộng hai nữa là được số tiếp theo (tính từ phải qua trái)
=> hai số tiếp theo là: 4 + 2 = 6; 6 + 2 = 8
=> hai số đó là: 8 và 6