Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 27. 3n=243. 3n
=243:27
=9. có 3n
=9=32.
=>3n=32. => n=2.
a, 2 n = 4 ⇒ 2 n = 2 2 ⇒ n = 2
b, 3 n + 1 = 27 = 3 3
⇒ n + 1 = 3 ⇒ n = 2
c, 4 + 4 n = 20
⇒ 4 n = 16 = 4 2 ⇒ n = 2
d, 15 n = 225 = 15 2 ⇒ n = 2
Bài 1:
\(\text{a) }x.x^2.x^3.x^4.x^5.....x^{49}.x^{50}\)
\(=x^{1+2+3+4+5+...+49+50}\)
\(=x^{\frac{51.50}{2}}\)
\(=x^{1275}\)
\(\text{b) Ta có:}\)
\(4^{15}=\left(2^2\right)^{15}=2^{2.15}=2^{30}\)
\(8^{11}=\left(2^3\right)^{11}=2^{3.11}=2^{33}\)
\(\text{Vì }2^{30}< 2^{33}\text{ nên }4^{15}< 8^{11}\)
Bài 2: Tìm x
\(\left(x-1\right)^4:3^2=3^6\)
\(\Rightarrow\left(x-1\right)^4=3^6\times3^2\)
\(\Rightarrow\left(x-1\right)^4=3^8\)
\(\Rightarrow\left(x-1\right)^4=3^{2.4}\)
\(\Rightarrow\left(x-1\right)^4=\left(3^2\right)^4\)
\(\Rightarrow x-1=9\)
\(\Rightarrow x=10\)
Bài 3 và bài 4 mk làm sau
Bài 1 : a) \(x.x^2.x^3.x^4.....x^{49}.x^{50}=x^{1+2+3+...+49+50}\) (Dễ rồi tự tính)
b) \(\hept{\begin{cases}4^{15}=\left(2^2\right)^{15}=2^{30}\\8^{11}=\left(2^3\right)^{11}=2^{33}\end{cases}}\)Rồi tự so sánh đi
Bài 2 :
\(\left(x-1\right)^4\div3^2=3^6\Leftrightarrow\left(x-1\right)^4=3^8=\left(3^2\right)^4=9^4\Leftrightarrow x-1=9\Leftrightarrow x=10\)
Bài 3 :
\(\hept{\begin{cases}27^{15}=\left(3^3\right)^{15}=3^{45}\\81^{11}=\left(3^4\right)^{11}=3^{44}\end{cases}}\) nt
3n=27<=>n=27:3=9(TM)
2n=625<=>n=625:2=32,5(KTM VÌ n LÀ SỐ TỰ NHIÊN)
12n=144<=>n=144:12=12(TM)
2n.16=128<=>n=128;16:2=4(TM)
5n:29=27<=>n=27X29:5=156,6((KTM VÌ n LÀ SỐ TỰ NHIÊN)
(2n+1)=27<=>2n=27-1<=>2n=26<=>n=26:2=13
bạn tự kết luân nha
TM:thỏa mãn
KTM không thỏa mãn
ủng hộ mk nha mk bị âm điểm
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
a) Ta có : 2 x : 2 2 = 2 5 nên x = 7.
b) Ta có: 3 x : 3 2 = 3 5 nên x = 7.
c) Ta có : 4 4 : 4 x = 4 2 nên x = 2.
d) Ta có : 5 x : 5 2 = 5 2 nên x = 4,
e) Ta có: 5 x + 1 : 5 = 5 4 nên x = 4.
f) Ta có : 4 2 x - 1 : 4 = 4 2 nên x = 2
2n=16
=> n=8
4n=1096
=> n=274
6n+3=216
=> n=35,5
3n=243
=> n=81
5n=15625
=> n=3125
4n-1=1024
=> n=256,25
a) Ta có: \(256< 2^n< 1024\)
\(\Leftrightarrow2^8< 2^n< 2^{10}\)
\(\Rightarrow8< n< 10\)
\(\Rightarrow n=10\)
Vậy \(n=10\)
b) Ta có: \(27< 3^n< 243\)
\(\Leftrightarrow3^3< 3^n< 3^5\)
\(\Rightarrow3< n< 5\)
\(\Rightarrow n=4\)
Vậy \(n=4\)
c) Ta có: \(16< 4^n< 256\)
\(\Leftrightarrow4^2< 4^n< 4^4\)
\(\Rightarrow2< n< 4\)
\(\Rightarrow n=3\)
Vậy \(n=3\)
d) Ta có: \(125< 5^n< 3125\)
\(\Leftrightarrow5^3< 5^n< 5^5\)
\(\Rightarrow3< n< 5\)
\(\Rightarrow n=4\)
Vậy n=4
a) \(256< 2^n< 1024\)
Ta có : \(2^8< 2^n< 2^{10}\)
Vậy n = 9
b) \(27< 3^n< 243\)
Ta có : \(3^3< 3^n< 3^5\)
Vậy n = 4
c) \(16< 4^n< 256\)
Ta có : \(4^2< 4^n< 4^4\)
Vậy n = 3
d) \(125< 5^n< 3125\)
Ta có : \(5^3< 5^n< 5^5\)
Vậy n = 4