Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 4 chữ số là: abcd (có gạch ngang trên đầu) ( 1024 \(\le\) abcd < 10000)
Do abcd là số chính phương => abcd = \(k^2\) (k \(\varepsilon\) N)
Theo bài ra ta có: ab - cd = 1
=> 100.(ab - cd) = 100
=> 100ab - 100cd = 100
=> 100ab - 100= 100cd
=> 100ab + cd - 100= 101cd ( cộng 2 vế với cd)
Mà abcd= 100ab + cd = \(k^2\)
=> \(k^2\) - 100= 101cd
=> (k-10)(k+10)=101cd (1)
=> k-10 chia hết cho 10 hoặc k+10 chia hết cho 10
Do 1024 \(\le\) abcd < 1000
=> \(32^2\le k^2<100^2\)
=> 32 \(\le k<100\) => (k-10;101)=1 (2)
Từ (1) và (2)=> k+10 chia hết cho 101 (*)
Ta có: 32\(\le k<100\)
=> 42 \(\le k+10<110\) (**)
Từ (*) và (**) => k + 10 = 101
=> k= 101 - 10 = 91
=> \(k^2=91^2=8281\) = abcd
Vậy abcd = 8281
Gọi là số phải tìm a, b, c, d N
Ta có:
Do đó: m2–k2 = 1353
(m+k)(m–k) = 123.11= 41. 33 ( k+m < 200 )
m+k = 123 m+k = 41
m–k = 11 m–k = 33
m = 67 m = 37
k = 56 k = 4
Kết luận đúng = 3136
ta có:
A+B+1=11...1(2n số 1)+44...4(n số 4)+1
=\(\frac{10^{2n}-1}{9}+4.\frac{10^n-1}{9}+1=\frac{10^{2n}+4.10^n+4}{9}\)
\(=\frac{\left(10^n+2\right)^2}{9}=\frac{\left(10...02\right)^2}{9}=\left(33...34\right)^2\) (n-1 số 3)
=>là 1 SCP
`a=11...11`(2n số 1)
`b=11...11`(n+1 số 1)
`c=66...66`(n số 6)
`->a+b+c+8=11...11+11...11+66...66+8`
\(=\dfrac{10^{2n}-1}{9}+\dfrac{10^{n+1}-1}{9}+\dfrac{6\left(10^n-1\right)}{9}+\dfrac{72}{9}\\ =\dfrac{10^n-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\\ =\dfrac{\left(10^n\right)^2+10\cdot10^n+6\cdot10^n-6+70}{9}\\ =\dfrac{\left(10^n\right)^2+16\cdot10^n+64}{9}\\ =\left(\dfrac{10^n+8}{3}\right)^2\)
`->a+b+c+8` là số chính phương
`->đpcm`
tick giúp mình nha
Lời giải
Đặt k = 11...1(n chữ số 1).
Thì a = 11...1111(2n chữ số 1) = 11..100..0 + 11...11 = k(9k + 1) + k = 9k2 + 2k.
Tương tự, b = 10k + 1; c = 6k.
=> a + b + c + 8 = 9k2 + 2k + 10k + 1 + 6k + 8 = 9k2 + 18k + 9 = (3k + 3)2.
Vậy a + b + c + 8 là số chính phương.
Chứng minh lại
Ta có:
a + b + c + 8 = (9k2 + 2k) + (10k + 1) + (6k) + 8 = 9k2 + 18k + 9 = (3k + 3)2
Ta thấy rằng (3k + 3)2 là bình phương của số tự nhiên (3k + 3). Do đó, a + b + c + 8 là số chính phương.
Kết luận
Bằng cách đặt k = 11...1(n chữ số 1), ta có thể chứng minh được rằng a + b + c + 8 là số chính phương.
bạn cú đánh nó lên mạng y hệt như này là nó ra đó.
mình ko sao chép đc nên bạn tự tìm nhé
Vũ Tuyết Nga:
Ko trả lời đc thì cút