Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải :
Mỗi số được tạo bởi các chữ số từ 0 đến 9 .
Ta gọi số chính phương có hai chữ số đó là : ab ( a khác 0 ; a và b < 10 )
a là số chính phương , b là số chính phương .
Mà các số chính phương có 1 chữ số là :
4 vì 4 = 22
9 vì 9 = 32
Vậy ab có thể bằng 49 hoặc 94 và ab cũng là số chính phương .
Trong hai số 49 và 94 số chính phương là : 49 ( vì 49 = 72 )
Suy ra ab = 49 .
Đáp số : 49 .
Số 49 là số chính phương của 7
số 4 trong 49 là chính phương của 2
số 9 trong 49 là chính phương của 3
đúng rồi nha
100% lun
ai qua thấy đúng ủng hộ, không phải vậy bạn có ý kiến khác tôi
Từ 0 -> 9 có 2 chữ số chính phương là 4 và 9
ð Vì thế ta có 2 TH
TH1: là số 49
VÌ 49 = 72
Nên ta chọn
TH2 : là số 94
Vì 94 ko bằng số nào bình phương nên ta loại
Vậy ta có được số 49
số 49 vì : 49=7\(^{ }^2\)
4=\(^{2^2}\)
9=\(^{3^2}\)
đừng trả lời, có trả lời nó cũng hổng tick đâu mà chi cho nó mệt
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
Gọi số cần tìm là ab (a khác 0 và a,b<10)
Vì một số chính phương có tận cùng là 1;4;5;6;9
=> b thuộc 1;4;9
Vì ab là số chính phương có tận cùng là 1;4;9 => ab thuộc 49;64;81
mà a là số chính phương => ab = 49
Vậy số cần tìm là 49