Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Hệ số góc của tiếp tuyến của đồ thị là:
\(y'\left(2\right)=-4\cdot2+1=-7\)
b, Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2;-6) là:
\(y=y'\left(2\right)\cdot\left(x-2\right)-6=-7\left(x-2\right)-6=-7x+8\)
f'(x)=y'=-3x^2+2x
f'(2)=-3*2^2+2*2=-3*4+4=-8
f(2)=-2^3+2^2-1=-8-1+4=-9+4=-5
y=f(2)+f'(2)(x-2)
=-5+(-8)(x-2)
=-8x+16-5
=-8x+11
Chọn A.
Đạo hàm: y’ = 3x2 – 4x + 3.
y'(-1) = 10; y(-1) = -6
Phương trình tiếp tuyến cần tìm là (d): y = 10(x + 1) – 6 = 10x + 4.
Đáp án A
- Tập xác định: D = R.
- Đạo hàm: y = 4 x 3 + 4 x .
- Tung độ tiếp điểm bằng 2 nên hoành độ tiếp điểm là nghiệm phương trình:
- +) Tại M(1; 2) thì y’(1) = 8. Phương trình tiếp tuyến là:
y = 8(x - 1) + 2 hay y = 8x – 6.
+) Tại N(-1; 2) thì y’(-1) = -8. Phương trình tiếp tuyến là:
y = -8(x + 1) + 2 hay y = -8x - 6.
- Vậy có 2 tiếp tuyến thỏa mãn đề bài là: y = 8x – 6 và y = -8x – 6.
Với x 0 = 1 thì y 0 = 2016 và f’(1) = 0.
- Do đó, phương trình tiếp tuyến tại điểm có hoành độ x= 1 là
y = 0(x- 1) + 2016 hay y = 2016.
\(y'=3x^2-6x\)
Do M thuộc (C) nên hệ số góc của tiếp tuyến tại M:
\(k=f\left(a\right)=3a^2-6a\)
\(f'\left(a\right)=6a-6>0;\forall a\in\left[2;3\right]\)
\(\Rightarrow f\left(a\right)\) đồng biến trên \(\left[2;3\right]\Rightarrow k_{max}\) khi \(a=3\)
\(\Rightarrow b=a^3-3a^2-1=-1\)
\(S=3-1=2\)
Chọn C