K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(D = \left\{ {\left( {3;1} \right);\left( {3;2} \right);\left( {3;3} \right);\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right)} \right\}\)

\(A{\rm{D}} = \left\{ {\left( {3;2} \right)} \right\};B{\rm{D}} = \left\{ {\left( {3;2} \right)} \right\};C{\rm{D}} = \left\{ {\left( {3;1} \right)} \right\}\)

b) \(\bar AB = \left\{ {\left( {1;6} \right);\left( {6;1} \right)} \right\}\)

\(\bar A{\rm{C}} = \left\{ {\left( {1;6} \right);\left( {6;1} \right);\left( {1;5} \right);\left( {5;1} \right);\left( {1;3} \right);\left( {3;1} \right);\left( {1;2} \right);\left( {2;1} \right);\left( {1;1} \right)} \right\}\)

22 tháng 8 2023

a) Tập hợp mô tả các biến cố:
`A: { (1, 4), (2, 3), (3, 2), (4, 1) }`
`B: { (1, 6), (2, 3), (3, 2), (6, 1) }`

b) Các kết quả khi cả hai biến cố A và B cùng xảy ra:
`{ (2, 3), (3, 2) }`

$HaNa$

6 tháng 5

gieo 2 con xúc xắc cân đối và đồng chất gọi k là biến cố 'số chấm trên 2 lần gieo có tổng bằng 8 'tính xắc xuất của biến cố k?

22 tháng 8 2023

THAM KHẢO:

Hai biến cố A và B không thể đồng thời cùng xảy ra.

6 tháng 11 2016

a) Không gian mẫu : Ω= { (i,j)∖ i.j = 1,2,3,4,5,6}
với i là số chấm xuất hiện trên mặt con súc sắc thứ nhất , j là số chấm xuất hiên trên mặt con súc sắc thứ 2.
→ /Ω/ = 36
b) từ gt ta có:
ΩA = { (1,1); (1,2); (1,3); (1,4); (1,5); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (4,1); (4,2); (5,1); (1,6); (3,4); (4,3); (5.2); (2,5); (6,1)}
→/ΩA/ = 21
Do đó: P(A) = /ΩA/ phần /Ω/ = 21/36 = 7/12
c) từ gt có:
ΩB = { (1,6) ; (2,6);... (6,6) ; (6,1); (6,2);..; (6,5)}
ΩC = {như trên nhưng trừ (6,6)}
do đó: P(B) = 11/36
P(C) = 10/36 = 5/18

 

23 tháng 11 2016

a. Không gian mẫu là 6*6=36

b. A có các kết quả thuận lợi là (1,6) (6,1) (2,5) (5,2) (3,4) (4,3)

c. Biến cố đối của B sẽ là " Không có con xúc xắc nào xuất hiện mặt 6 chấm" Tức là con xúc xắc sẽ trở thành có 5 mặt => 5A2+5

=> P(B)= 1- P(Biến cố đối B)

d. (6,1) (6,2) (6,3) (6,4) (6,5) và ngược lại. Trừ (6,6)

=> có 10

=> P(C)= 10/36= 5/18

30 tháng 4 2023

Không gian mẫu \(\Omega=\left\{S;N;1;2;3;4;5;6\right\}\)

\(\Rightarrow n\left(\Omega\right)=8\)

\(A=\left\{S;2;4;6\right\}\)

\(\Rightarrow n\left(A\right)=4\)

Xác suất của biến cố \(A\) :

\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4}{8}=\dfrac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(A = \left\{ {\left( {1;1} \right);\left( {1;3} \right);\left( {1;5} \right);\left( {3;1} \right);\left( {3;3} \right);\left( {3;5} \right);\left( {5;1} \right);\left( {5;3} \right);\left( {5;5} \right)} \right\}\).

\(B\) là biến cố “Tổng số chấm xuất hiện là số lẻ”

\(\begin{array}{l} \Rightarrow B = \left\{ {\left( {1;2} \right);\left( {1;4} \right);\left( {1;6} \right);\left( {2;1} \right);\left( {2;3} \right);\left( {2;5} \right);\left( {3;2} \right);\left( {3;4} \right);\left( {3;6} \right);\left( {4;1} \right);\left( {4;3} \right);\left( {4;5} \right);} \right.\\\left. {\left( {5;2} \right);\left( {5;4} \right);\left( {5;6} \right);\left( {6;1} \right);\left( {6;3} \right);\left( {6;5} \right)} \right\}\end{array}\)

Vậy hai biến cố \(A\) và \(B\) xung khắc.

Chọn B.