Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 :
a) x - {x-[(-x-1)]} = 1
=> x -{x -[2x-1]} =1
=> x - {x-2x+1} =1
=> x - ( -1+1)=1
=> x+x-1 = 1
=> 2x = 2
=> x =1
vậy x = 1
b) ( x+5).(x-2)<0
=> x+5 và x-2 là 2 thừa số trái dấu
mà x-2 < x+5
=> x-2 âm => x<2
x+5 dương=> x > -5
=> -5 < x<2
vậy ....
Bài 2 :
( x+1).(xy-1) = 3
vì x,y thuộc Z => x+1 thuộc Z , xy-1 thuộc Z
=> x + 1 avf xy -1 là các ước nguyên của 3
từ đó tìm được các giá trị
+ nếu x = -2 => y=1
+ nếu x = 2 => y =1
+ nếu x = -4 => y =0
b) 3x+4y-xy =15
x.(3-y)+4y = 15 x.(3-y)=15-4y
x.(3-y)=12-4y+3
x.(3-y) = 4.(3-y)+3
x.(3-y)-4.(3-y)=3
vì x,y thuộc Z => 3-y thuộc Z , x-4 thuộc Z
=> 3-y và x-4 là các ước nguyễn của 3
=>.....
ta tìm được các giá trị của x và y
Bài 3:
nếu x = 0 thì 26^x = 1 khác 25^y + 24^z với mọi y, z thuộc N, loại
=> x lớn hơn hoặc = 1
=> 26^x chẵn
mà 25^y lẻ với mọi y thuộc N
=> 24^7 lẻ => z =0
ta có 26^x = 25^y + 1
với x = y+ 1 thì 26 = 25 +1 , đúng
với x > 1, y > 1 thì 26^x có 2 c/s t/c là 76
=> 26^x chia hết cho 4
25^y có 2 c/s t/c là 25 => 25^y chia 4 dư 1
=> 25 ^y + 1 chia 4 dư 2
=> 26^x khác 25^y + 1 , loại
Bài 4:
ta công tất cả các ( x-y)+(y-x)+(z+x) = 2012
đó là 2 lần x => x= 1006
rùi thay
ta có đ/s :
z =1007
y = -1005
Bài 5 :
do 20/39 là phân số tối giản
có UWCLN ( 20,39 ) =1
mà phân số cần tìm UWCLN của tử và mẫu là 36
=> phân số cần tìm là :
20.36/39.36
= 720.1404
Đ/S: 720/1404
Bài 6 :
vì UWClN ( a,b) = 12 => a =12 m, b =12n
( m,n ) =1
BCNN ( a,b ) =12 .m.n =180
=> m.n = 15
do vai trò a,b bình đẳng, giải sử a lớn hơn hoặc bằng b
=> m lớn hơn hoặc bằng n
mà ( m,n ) =1 => m =15, n= 1
hoặc m =5, n =3
vậy vs a =180=> b=12
vs a = 60 => b =36
x=8p ; y=8q với (p;q) =1
Mà x+y =32 => 8p+8q =32 => p+q =4
=: > p =1 q =3
p=1 => x =8
q =3 => y =3.8 =24
Vậy (x;y) =(8;24) hoặc (24;8)
a, Do UCLN là 5 nên a, b chia hết cho 5 => tận cùng là 0 hoặc 5
Ta có 20 = 15 + 5 = 18 + 2=19+1=17+3=16+4=14+6=13+7=12+8=11+9
=> 2 số a và b là 15 và 5 hoặc 5 và 15
Bài sau làm tương tự em nhé :)
Ta có : \(\left(x;y\right)=8\)
\(\Rightarrow x=8m\)và \(y=8n\)
Với (m;n)=1(m;n)=1 , m;n ϵ N
Vì x và y có vai trò như nhau nên giả sử x > y → m > n
Lại có : \(y\times x=192\)
\(\Rightarrow8m\times8n=192\)
\(\Rightarrow mn=3=1\times3\)
\(\Rightarrow\)m = 3 ; n = 1
\(\Rightarrow\) x = 24 ; y = 8
Vậy x;y={(24;8)}
ƯCLN (x, y) = 1 => x và y là 2 số nguyên tố cùng nhau có tích là 6.
Giả sử x ≥ y, ta có bảng
x | 6 | 3 |
y | 1 | 2 |
Vì ƯCLN(\(x;y\)) = 6
⇒ \(x\) = 6.k; y = 6.d; k; d \(\in\) N; (k;d) = 1
Theo bài ra ta có: 6.k.6.d = 432
k.d = 432:(6.6)
k.d = 12
12 = 22.3; Ư(12) = {1; 2; 3; 4;6; 12}
Lập bảng ta có:
k.d | 12 | 12 | 12 | 12 | 12 | 12 |
k | 1 | 2 | 3 | 4 | 6 | 12 |
d | 12 | 6 | 4 | 3 | 2 | 1 |
Vì \(x;y\) nguyên tố cùng nhau và \(x\) < y nên theo bảng trên ta có:
(k; d) = (1; 12); (3;4)
Vậy \(x\) = 6.1⇒ \(x\) = 6; y = 6.12 ⇒ y = 72
hoặc \(x\) = 6.3 ⇒ \(x\) = 18; y = 6.4 ⇒ y = 24
Kết luận các cặp (\(x;y\)) thỏa mãn đề bài là:
(\(x;y\)) = (6; 72); (18; 24)