Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.
Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.
b,n>4
Ta có : an=144..4=10000b+4444(bεZ)
Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12
Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.
Vậy an không phải là số chính phương.
Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương
Lời giải:
Ta thấy 1 scp khi chia 4 luôn có dư là $0$ hoặc $1$
$\Rightarrow n^2\equiv 0,1 \pmod 4$
Mà $1990\equiv 2\pmod 4$
$\Rightarrow 1990+n^2\equiv 2, 3\pmod 4$
$\Rightarrow 1990+n^2$ không thể là số chính phương với mọi số tự nhiên $n$.