Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây bn nhé:
Ta có a/3 = b/8= c/5. Áp dụng tính chất dãy tỉ số bằng nhau ta có:
2a+3b-c/2.3+3.8-5 = 2a+3b-c/6+24-5 = 50/25 = 2
=> a/3 = 2 => a=6
=> b/8 = 2 => b=16
=> c/5 = 2 => c=10
Nhìn ngắn vậy thôi chứ ko sai đâu bn
Chúc bn học tốt^^
\(\dfrac{a}{3}\) = \(\dfrac{b}{8}\) = \(\dfrac{c}{5}\) và 2a + 3b - c = 50
=> \(\dfrac{2a}{6}\) = \(\dfrac{3b}{24}\) = \(\dfrac{c}{5}\) và 2a + 3b - c = 50
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2a}{6}\) = \(\dfrac{3b}{24}\) = \(\dfrac{c}{5}\) = \(\dfrac{2a+3b-c}{6+24-5}\) = \(\dfrac{50}{25}\) = 2
Vậy:
\(\dfrac{2a}{6}=2\) => \(2a=2.6=12\) => \(a=12:2=6\)
\(\dfrac{3b}{24}=2\) => \(3b=2.24=48\) => \(b=48:3=16\)
\(\dfrac{c}{5}=2\) => \(c=2.5=10\)
Lời giải:
$OE\parallel MN\Rightarrow \widehat{MOE}=\widehat{OMN}=45^0$ (hai góc so le trong)
$OE\parallel QP\Rightarrow \widehat{EOP}+\widehat{OPQ}=180^0$ (hai góc trong cùng phía)
$\Rightarrow \widehat{EOP}=180^0-\widehat{OPQ}=180^0-135^0=45^0$
Ta có:
$\widehat{MOP}=\widehat{MOE}+\widehat{EOP}=45^0+45^0=90^0$
b.
Có, vì tia $OE$ nằm giữa $OM, OP$ và $\widehat{MOE}=\widehat{EOP}=45^0$
Tham khảo
Avt của em là Hinata , tình yêu của Hinata là Naruto , hỏi Naruto í :))))
rên tia đối của tia HI lấy điểm D sao cho ID=IK.
=> IDN= IKN (c.g.c)=> ND=NK (*)và = =120.
Tam giác HIK có = =360. Suy ra = 1080. Mà góc DHK kề bù với góc IHK nên = 720.(1)
Tam giác IDK có ID=IK ( theo cách vễ điểm D) => Tam giác IDK là tam giác cân, lại có góc DIK =360, nên có = =720.(2)
Từ (1) và (2) =>DKDH cân tại K => KD=KH (3)
Mặt khác, = 720 – 120 = 600 (**)
Từ (*) và (**)=>DKDN là tam giác đều => KD=KN (4)
Bạn ơi mình bảo này
Cái kiến thức về tia ý
Theo như mình nhớ thì
Đến lớp 6 mới học hay sao ý
Hình gồm điểm O và một phần đường thẳng bị chia ra bởi điểm O được gọi là một tia gốc O, còn gọi là một nửa đường thẳng gốc O.
Khi đọc (hay viết) tên một tia, phải đọc (hay viết) tên gốc trước.
Ví dụ: Tia Ox
Tia Ox không bị giới hạn về phía x
Tia gồm:Hai tia đối nhau,Hai tia trùng nhau