Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)=\(\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\) = \(\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\) =\(\dfrac{x+y}{4}\)
a. \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)
\(=\dfrac{x+y}{4}\)
b. \(\dfrac{x+5}{2x-2}-\dfrac{4}{x^2-1}:\dfrac{2}{x+1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{\left(x+1\right)\left(x-1\right)}:\dfrac{2}{x+1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{2}{x-1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{2\left(x-1\right)}\)
\(=\dfrac{x+1}{2\left(x-1\right)}\)
Ta có: \(\dfrac{y}{x-y}-\dfrac{x^3-xy^2}{x^2+y^2}\cdot\left(\dfrac{x}{x^2-2xy+y^2}-\dfrac{y}{x^2-y^2}\right)\)
\(=\dfrac{y}{x-y}-\dfrac{x\left(x^2-y^2\right)}{x^2+y^2}\cdot\left(\dfrac{x\left(x+y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}-\dfrac{y\cdot\left(x-y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}\right)\)
\(=\dfrac{y}{x-y}-\dfrac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}\cdot\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)^2\left(x+y\right)}\)
\(=\dfrac{y}{x-y}-\dfrac{x\cdot\left(x^2+y^2\right)}{\left(x^2+y^2\right)\cdot\left(x-y\right)}\)
\(=\dfrac{y}{x-y}-\dfrac{x}{x-y}\)
\(=\dfrac{y-x}{x-y}=\dfrac{-\left(x-y\right)}{x-y}=-1\)
a.
\(\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}=\dfrac{x^3-1}{x-1}-\dfrac{x^2-1}{x+1}\)
\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x-1}-\dfrac{\left(x-1\right)\left(x+1\right)}{x+1}\)
\(=x^2+x+1-\left(x-1\right)=x^2+2\)
b.
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}-\dfrac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}+\dfrac{4y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2-\left(x-y\right)^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{4y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2y}{x-y}\)
c.
\(\dfrac{x+5}{2x-4}.\dfrac{4-2x}{x+2}=\dfrac{x+5}{2x-4}.\dfrac{-\left(2x-4\right)}{x+2}=-\dfrac{x+5}{x+2}\)
d.
\(\dfrac{8}{x^2+2x-3}+\dfrac{2}{x+3}+\dfrac{1}{x-1}=\dfrac{8}{\left(x-1\right)\left(x+3\right)}+\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{\left(x-1\right)\left(x+3\right)}\)
\(=\dfrac{8+2\left(x-1\right)+x+3}{\left(x-1\right)\left(x+3\right)}=\dfrac{3x+9}{\left(x-1\right)\left(x+3\right)}\)
\(=\dfrac{3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{3}{x-1}\)
a) \(18x^4y^3:12\left(-x\right)^3y\)
\(=\left(18:-12\right)\left(x^4:x^3\right)\left(y^3:y\right)\)
\(=-\dfrac{3}{2}xy^2\)
b) \(x^2y^2-2xy^3:\dfrac{1}{2}xy^2\)
\(=\dfrac{xy^2\left(x-2y\right)}{\dfrac{1}{2}xy^2}\)
\(=\dfrac{x-2y}{\dfrac{1}{2}}\)
\(=2x-4y\)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
\(a,\dfrac{x}{x+3}+\dfrac{2-x}{x+3}\\ =\dfrac{x+2-x}{x+3}\\ =\dfrac{2}{x+3}\\b,\dfrac{x^2y}{x-y}-\dfrac{xy^2}{x-y}\\ =\dfrac{x^2y-xy^2}{x-y}\\ =\dfrac{xy\left(x-y\right)}{x-y}\\ =xy\\ c,\dfrac{2x}{2x-y}+\dfrac{y}{y-2x}\\=\dfrac{2x}{2x-y}-\dfrac{y}{2x-y}\\ =\dfrac{2x-y}{2x-y}\\ =1 \)
`a, x/(x+3) + (2-x)/(x+3) = (x+2-x)/(x+3) = 2/(x+3)`
`b, (x^2y)/(x-y) - (xy^2)/(x-y) = (x^2y-xy^2)/(x-y) = (xy(x-y))/(x-y)= xy`
`c, (2x)/(2x-y) - (y)/(2x-y)`
`= (2x-y)/(2x-y) = 1`
\(\left(\dfrac{x+y}{x}-\dfrac{2x}{x-y}\right)\cdot\dfrac{y-x}{x^2+y^2}\)
\(=\dfrac{\left(x+y\right)\left(x-y\right)-2x^2}{x\left(x-y\right)}\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}\)
\(=\dfrac{x^2-y^2-2x^2}{x}\cdot\dfrac{-1}{x^2+y^2}\)
\(=\dfrac{-1\left(-x^2-y^2\right)}{x\left(x^2+y^2\right)}=\dfrac{1}{x}\)