Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)
\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)
\(=2x^2+x+1\)
b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)
c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)
\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)
d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)
\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)
\(=x^2-2x-5\)
c: \(\dfrac{4x^3-8x^2+13x-5}{2x-1}=\dfrac{4x^3-2x^2-6x^2+3x+10x-5}{2x-1}\)
=2x^2-3x+5
b: \(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Lời giải:
a.
$5x-[2x+1-(2x-3)-(4x+1)]=5x-(2x+1-2x+3-4x-1)$
$=5x-(-4x+3)=5x+4x-3=9x-3$
b.
$(-3x^2+2x-1)+(4x^2-2x+3)$
$=-3x^2+2x-1+4x^2-2x+3=x^2+2$
Bài 2:
5x-(-2x-0,3)=2,4
=>5x+2x+0,3=2,4
=>7x=2,1
hay x=0,3
Để thực hiện phép chia một đa thức cho một đa thức khác, ta làm như sau:
Bước 1:
- Chia đơn thức bậc cao nhất của đa thức bị chia cho đơn thức bậc cao nhất của đa thức chia.
- Nhân kết quả trên với đa thức chia và đặt tích dưới đa thức bị chia sao cho hai đơn thức có cùng số mũ của biến ở cùng cột.
- Lấy đa thức bị chia trừ đi tích đặt dưới để được đa thức mới.
Bước 2: Tiếp tục quá trình trên cho đến khi nhận được đa thức không hoặc đa thức có bậc nhỏ hơn bậc của đa thức chia.
a) (1-12+13)(45-34)2
= 4(45-34)
= 4.11
= 44
b) (2x-1)4=81
2x-1=81:4
2x-1=20,25
2x=21,25
x=21,25:2
x=10,625
a) 4x²(x² - 5x + 2)
= 4x².x² - 4x².5x + 4x².2
= 4x⁴ - 20x³ + 8x²
b) (2x² - 5x + 3) : (2x - 3)
= (2x² - 3x - 2x + 3) : (2x - 3)
= [(2x² - 3x) - (2x - 3)] : (2x - 3)
= [x(2x - 3) - (2x - 3)] : (2x - 3)
= (2x - 3)(x - 1) : (2x - 3)
= x - 1
\(a,\left(8x^3-1\right):\left(2x-1\right)\)
\(=\left[\left(2x-1\right)\left(4x^2+2x+1\right)\right]:\left(2x-1\right)\)
\(=4x^2+2x+1\)
+ Thương: \(4x^2+2x+1\)
+ Dư: \(0\)