Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
\(=\left(\frac{3\left(0,5+\frac{1}{3}-0,25\right)}{5\left(0,5+\frac{1}{3}-0,25\right)}+\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-5\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}\right).\frac{2005}{1890}+115\)
\(=\left(\frac{3}{5}-\frac{3}{5}\right).\frac{2005}{1890}+115=0+115=115\)
= ( \(\frac{\frac{3}{2}+\frac{3}{3}-\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}-\frac{5}{4}}\)+ \(\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{-5}{8}+\frac{5}{10}-\frac{5}{11}-\frac{5}{12}}\)) x \(\frac{2005}{1890}\)+ 115
= ( \(\frac{3(\frac{1}{2}+\frac{1}{3}-\frac{1}{4})}{5(\frac{1}{1}+\frac{1}{3}-\frac{1}{4})}\)+ \(\frac{3(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12})}{-5(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12})}\)) x \(\frac{2005}{1890}\)+ 115
=( \(\frac{3}{5}\)+\(\frac{3}{-5}\)) x \(\frac{2005}{1890}\)+115 = 0 +115 = 115
\(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
Ta nhận thấy các cặp số đều bằng 3/5 và các dấu cũng giống nhau. ( các số có cùng dấu thì phân số đó cũng cùng dấu.)
=> Phân số này sẽ bằng 3/5
\(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\)
Ta nhận thấy các cặp số đều bằng -3/5 và các dấu thì trái nhau. ( các số có trái dấu thì phân số đó cũng trái dấu.)
=> Phân số này sẽ bằng -3/5.
Sau khi rút gọn bài toán sẽ thành:
\(\left(\frac{3}{5}-\frac{3}{5}\right)\div\frac{1890}{2005}+115=115\)
Câu b tạm thời mình chưa nghĩ ra. Chúc bạn học tốt.
a) \(A=\left(\frac{3}{5}-\frac{3}{5}\right):\frac{1890}{2005}+115\)
\(\Rightarrow A=115\)
b) \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)
\(\Rightarrow3B-B=\left(1+\frac{1}{3}+....+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2B=1-\frac{1}{3^{2005}}\)
\(\Rightarrow B=\frac{1-\frac{1}{3^{2005}}}{2}\)
\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2005}}< \frac{1}{2}\)
\(\Rightarrow B< \frac{1}{2}\)
sssongokusss nếu bạn ko biết trả lời thì thôi để cho ngta yên đi
\(a,\frac{-7}{25}.\frac{11}{13}+\frac{-7}{25}.\frac{2}{13}-\frac{18}{25}\)
\(=\frac{-7}{25}.\left(\frac{11}{13}+\frac{2}{13}\right)-\frac{18}{25}=\frac{-7}{25}-\frac{18}{25}=-1\)
\(b,\frac{5}{7}.\frac{1}{3}-\frac{5}{7}.\frac{1}{4}-\frac{5}{7}.\frac{1}{12}=\frac{5}{7}.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)=\frac{5}{7}.\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)
\(=\frac{5}{7}.0=0\)
c)\(5\frac{2}{5}.4\frac{2}{7}+5\frac{5}{7}.5\frac{2}{5}=\frac{27}{5}.\frac{30}{7}+\frac{40}{7}.\frac{27}{5}=\frac{27}{5}.\left(\frac{30}{7}+\frac{40}{7}\right)\)
\(=\frac{27}{5}.10=27.2=54\)
\(d,75\%-1\frac{1}{2}+0,5:\frac{5}{12}-\left(\frac{-1}{2}\right)^2=\frac{3}{4}-\frac{3}{2}+\frac{1}{2}.\frac{12}{5}-\frac{1}{4}\)
\(=\left(\frac{3}{4}-\frac{1}{4}\right)-\frac{3}{2}+\frac{6}{5}=\frac{1}{2}-\frac{3}{2}+\frac{6}{5}=-1+\frac{6}{5}=\frac{-5}{5}+\frac{6}{5}=\frac{1}{5}\)
\(A=\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{-\dfrac{5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\\ A=\dfrac{3\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{-5\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}+\dfrac{3\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{5\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}\\ A=\dfrac{-3}{5}+\dfrac{3}{5}=0\)
\(A=\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}=\dfrac{3\left(0,125-0,1+\dfrac{1}{11}+\dfrac{1}{12}\right)}{-5\left(0,125-0,1+\dfrac{5}{11}+\dfrac{5}{12}\right)}+\dfrac{\dfrac{3}{5}\left(2,5+\dfrac{5}{3}-1,25\right)}{2,5+\dfrac{5}{3}-1,25}=-\dfrac{3}{5}+\dfrac{3}{5}=0\)