K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2016

(x2-y2+6x+9):(x+y+3)

= [(x+3)2-y2]:(x+y+3)

=(x+3+y)(x+3-y):(x+y+3)

=x+3-y

28 tháng 8 2017

Giải:

a) \(\left(x^2+2x+1\right)\left(x+1\right)\)

\(=x^2.x+2x.x+1.x+x^2.1+2x.1+1.1\)

\(=x^3+2x^2+x+x^2+2x+1\)

\(=x^3+3x^2+3x+1\)

b) \(\left(x^3-x^2+2x-1\right)\left(5-x\right)\)

\(=x^3.5-x^2.5+2x.5-1.5+x^3.\left(-x\right)-x^2.\left(-x\right)+2x.\left(-x\right)-1.\left(-x\right)\)

\(=5x^3-5x^2+10x-5-x^4+x^3-2x^2+x\)

\(=6x^3-7x^2+11x-5-x^4\)

c) \(\left(x-5\right)\left(x^3-x^2+2x-1\right)\)

\(=x.x^3-5.x^3+x.\left(-x^2\right)-5.\left(-x^2\right)+x.2x-5.2x+x.\left(-1\right)-5.\left(-1\right)\)

\(=x^4-5x^3-x^3+5x^2+2x^2-10x-x+5\)

\(=x^4-6x^3+7x^2-11x+5\)

Chúc bạn học tốt!!!

12 tháng 9 2017

lớp 8 Phạm Hoàng Giang không chơi kiểu lớp 7

đúng làm 8 mà làm

\(A=\left(x^2+2x+1\right)\left(x+1\right)=\left(x+1\right)^2\left(x+1\right)=\left(x+1\right)^3\)

\(A=x^3+3x^2+3x+1\)

21 tháng 7 2019

Phân tích số bị chia thành nhân tử, trong đó có nhân tử là số chia.

(x2 – y2 + 6x + 9) : (x + y + 3)

(Có x2 + 6x + 9 là hằng đẳng thức)

= (x2 + 6x + 9 – y2) : (x + y + 3)

= [(x2 + 2.x.3 + 32) – y2] : (x + y + 3)

= [(x + 3)2 – y2] : (x + y + 3)

(Xuất hiện hằng đẳng thức (3))

= (x + 3 + y)(x + 3 – y) : (x + y + 3)

= x + 3 – y = x – y + 3

a: \(0.5xy\left(8y-8x\right)-6y\left(y-x\right)-4xy^2+6xy\)

\(=4xy^2-4x^2y-6y^2+6xy-4xy^2+6xy\)

\(=-4x^2y+12xy-6y^2\)

24 tháng 12 2018

\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(A=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(A=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(a=x^2+8x+11\)

\(\Rightarrow A=\left(a-4\right)\left(a+4\right)+15\)

\(\Leftrightarrow A=a^2-16+15\)

\(\Leftrightarrow A=a^2-1\)

Thay a vào A ( :v ) ta có :

\(A=\left(x^2+8x+11\right)^2-1\)

\(A=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)\)

\(A=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(A=\left(x^2+2x+6x+12\right)\left(x^2+8x+10\right)\)

\(A=\left[x\left(x+2\right)+6\left(x+2\right)\right]\left(x^2+8x+10\right)\)

\(A=\left(x+6\right)\left(x+2\right)\left(x^2+8x+10\right)⋮x+6\left(đpcm\right)\)