Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $f(x)=x^4-3x^2+2x-7=x^3(x+2)-2x^2(x+2)+x(x+2)-7$
$=(x+2)(x^3-2x^2+x)-7=g(x)(x^3-2x^2+x)-7$
Vậy $f(x)$ chia $g(x)$ được thương là $x^3-2x^2+x$ và dư là $-7$
b. Theo phần a $f(x)=(x^3-2x^2+x)g(x)-7$
Với $x$ nguyên, để $f(x)\vdots g(x)$ thì $7\vdots g(x)$
$\Leftrightarrow x+2$ là ước của $7$
$\Rightarrow x+2\in\left\{\pm 1;\pm 7\right\}$
$\Leftrightarrow x\in\left\{-3; -1; 5; -9\right\}$
c.
Theo định lý Bezout về phép chia đa thức, để $K(x)=-2x^3+x-m\vdots x+2$ thì: $K(-2)=0$
$\Leftrightarrow -2(-2)^3+(-2)-m=0$
$\Leftrightarrow 14-m=0$
$\Leftrightarrow m=14$
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
`(-x^4+2x-3x^2):(x-2)`
`=[-x(x^3+3x-2)]:(x-2)`
`=[-x(x^3-2x^2+2x^2-4x+7x-14+12)]:(x-2)`
`={-x[x^2(x-2)+2x(x-2)+7(x-2)]-12x+24-24}:(x-2)`
`=[-x(x-2)(x^2+2x+7)-12(x-2)-24]:(x-2)`
`=-x(x^2+2x+7)-12` và dư `-24`
`=-x^3-2x^2-7x-12` và dư `-24`
\(\dfrac{-x^4-3x^2+2x}{x-2}\)
\(=\dfrac{-x^4+2x^3-2x^3+4x^2-7x^2+14x-12x+24-24}{x-2}\)
\(=-x^3-2x^2-7x-12+\dfrac{-24}{x-2}\)
1) \(\Leftrightarrow\left(x-4\right)\left(x+4\right)-x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4-x\right)=0\)
\(\Leftrightarrow\left(x-4\right)4=0\)
\(\Leftrightarrow x=4\)
2) \(\left(x+3\right)^2-\left(x-3\right)\left(x+5\right)=x^2+6x+9-x^2-2x+15=4x+24\)
3) \(2x^3+3x^2-2x+a=2x^2\left(x-2\right)+7x\left(x-2\right)+16\left(x-2\right)+32+a\)
Để \(2x^3+3x^2-2x+a⋮x-2\) thì \(32+a=0\Leftrightarrow a=-32\)
1.
x2 - 16 - x(x - 4) = 0
<=> (x2 - 42) - x(x - 4) = 0
<=> (x - 4)(x + 4) - x(x - 4) = 0
<=> (x + 4 - x)(x + 4) = 0
<=> 4(x + 4) = 0
<=> x + 4 = 0
<=> x = -4
2.
(x + 3)2 - (x - 3)(x + 5)
= x2 + 6x + 9 - (x2 + 5x - 3x - 15)
= x2 + 6x + 9 - x2 + 5x - 3x - 15
= x2 - x2 + 6x + 5x - 3x + 9 - 15
= 8x - 6
`-1/3x^5y^2:(-2xy)-(x^2+2x+1):(x+1)`
`=-1/3:(-2).(x^5:x).(y^2:y)-(x+1)^2:(x+1)`
`=-1/6x^4y-(x+1)`
`=-1/6x^4y-x-1`
\(\dfrac{-1}{3}x^5y^2:\left(-2xy\right)-\left(x^2+2x+1\right):\left(x+1\right)\)
\(=\dfrac{1}{6}x^4y-x-1\)
a: \(\dfrac{A}{B}=\dfrac{x^3+x^2+2x^2+2x+x+1-3}{x+1}=x^2+2x+1-\dfrac{3}{x+1}\)
b: Để A chia hết cho B thì \(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
\(\dfrac{-x^4-3x^2+2x}{x-2}\)
\(=\dfrac{-x^4+2x^3-2x^3+4x^2-7x^2+14x-12x+24-24}{x-2}\)
\(=-x^3-2x^2-7x-12+\dfrac{-24}{x-2}\)