K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2016

a) \(=x^2-2x+3-2x-x^2-2+4x=1\)

b)\(=6x+10x^2-6x+2x=10x^2+2x=2x\left(5x+1\right)\)

c)\(=3x^{n-2}.x^{n+2}-3x^{n-2}.y^{n+2}+y^{n+2}.3x^{n-2}-y^{n+2}.y^{n-2}\)

\(=3x^{2n}-y^{2n}\)

30 tháng 12 2022

\(5\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+2y^{n-1}\right)+4\left(-x^{n+1}+2y^{n-1}\right)\)

\(=15x^{n+1}-5y^{n-1}-3x^{n+1}-6y^{n-1}-4x^{n+1}+8y^{n-1}\)

\(=8x^{n+1}-3y^{n-1}\)

20 tháng 12 2019

a) x = 2 7                         b) x = 2.

c) x = 2                          d) x = 1.

18 tháng 11 2021

\(Bài1:\\ a,\left(4x-1\right)\left(2x^2-x-1\right)=4x\left(2x^2-x-1\right)-\left(2x^2-x-1\right)=8x^3-4x^2-4x-2x^2+x+1=8x^3-6x^2-3x+1\\ b,\left(4x^3+8x^2-2x\right):2x\\ =2x\left(2x^2+4x-1\right):2x\\ =2x^2+4x-1\)

\(Bài2:\\ a,2x^3-8x^2+8x=2x\left(x^2-4x+4\right)=2x\left(x-2\right)^2\\ b,2xy+2x+yz+z=2x\left(y+1\right)+z\left(y+1\right)=\left(y+1\right)\left(2x+z\right)\\ c,x^2+2x+1-y^2=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\)

ukm thiếu ý c bài 1 nha bn XD

14 tháng 5 2016

a) <=> \(2x^2-8x+3x-12+x^2-7x+10=3x^2-5x-12x+20\)

<=> \(2x^2-8x+3x-12+x^2-7x+10-3x^2+5x+12x-20=0\)

<=> \(5x-22=0\)

<=> \(5x=22\)

<=> \(x=\frac{22}{5}\)

b) <=> \(24x^2-9x+16x-6-4x^2-7x-16x-28=10x^2+5x-2x-1\)

<=> \(24x^2-9x+16x-6-4x^2-7x-16x-28-10x^2-5x+2x+1=0\)

<=> \(10x^2-19x-33=0\)

<=> \(10x^2-30x+11x-33=0\)

<=> \(10x\left(x-3\right)+11\left(x-3\right)=0\)

<=> \(\left(x-3\right)\left(10x+11\right)=0\)

<=> \(x=3;x=-\frac{11}{10}\)

25 tháng 6 2017

a) \(A=x^2-6x+15\)

\(A=x^2+6x+9+6\)

\(A=\left(x+3\right)^2+6\ge6\)

vậy Min A=6\(\Leftrightarrow\)x=-3

b) Min B=4x

c) \(C=2x^2-6x+4\)

d) \(D=x^2+x+1\)

\(=x^2+2\cdot\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

vậy Min D\(=\frac{3}{4}\Leftrightarrow x=-\frac{1}{2}\)

25 tháng 6 2017

Ta có : A = x2 - 6x + 15

=> A = x2 - 2.x.3 + 9 + 6

=> A = x2 - 2.x.3 + 32 + 6

=> A = (x - 3)2 + 6 

Mà : (x - 3)\(\ge0\forall x\in R\)

Nên : (x - 3)2 + 6 \(\ge6\forall x\in R\)

Vậy GTNN của A là 6 khi x = 3