Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
a) \(\frac{3}{4}x^5y^7\cdot\frac{-1}{2}xy^6\cdot\frac{-11}{9}x^2y^5\)
\(=\left(\frac{3}{4}\cdot\frac{-1}{2}\cdot\frac{-11}{9}\right)\cdot\left(x^5y^7\right)\cdot\left(xy^6\right)\cdot\left(x^2y^5\right)\)
\(=\frac{11}{24}\cdot\left(x^5xx^2\right)\cdot\left(y^7y^6y^5\right)\)
\(=\frac{11}{24}x^8y^{18}\)
Bậc của đơn thức trên : 8 + 18 = 26
b) Thay x = 1 và y = -1 vào đơn thức ta được
\(\frac{11}{24}\cdot1^8\cdot\left(-1\right)^{18}=\frac{11}{24}\cdot1\cdot1=\frac{11}{24}\)
\(E=\left(1\frac{1}{2}xy^2\right).\left(1\frac{1}{3}x^2y^3\right).\left(1\frac{1}{4}x^3y^4\right).....\left(1\frac{1}{2014}x^{2013}y^{2014}\right)\)
\(E=\left(\frac{3}{2}xy^2\right).\left(\frac{4}{3}x^2y^3\right).\left(\frac{5}{4}x^3y^4\right).....\left(\frac{2015}{2014}x^{2013}y^{2014}\right)\)
\(E=\left(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{2015}{2014}\right).\left(x.x^2.x^3......x^{2013}\right).\left(y^2y^3.y^4......y^{2014}\right)\)
\(E=\left(\frac{3.4.5......2015}{2.3.4......2014}\right).\left(x^{1+2+3+....+2013}\right).\left(y^{2+3+4+....+2014}\right)\)
\(E=\frac{2015}{2}.x^{2027091}.y^{2029104}\)
Đến đây tự kết luận nhé(hệ số;phần biến;đơn thức)
Bài 1:
a) Ta có: \(\left(-\frac{5}{4}x^2y\right)\cdot\left(\frac{2}{5}x^3y^4\right)\)
\(=\left(-\frac{5}{4}\cdot\frac{2}{5}\right)\cdot\left(x^2\cdot x^3\right)\cdot\left(y\cdot y^4\right)\)
\(=\frac{-1}{2}x^5y^5\)
b) Hệ số là \(\frac{-1}{2}\), phần biến là \(x^5;y^5\); Bậc là 10
Bài 2:
a) Ta có: \(A+\left(\frac{3}{4}x^2yz\right)\cdot\left(-\frac{8}{9}x^2y^3x\right)\)
\(=\left(\frac{3}{4}\cdot\frac{-8}{9}\right)\cdot\left(x^2\cdot x^2\cdot x\right)\cdot\left(y\cdot y^3\right)\cdot z\)
\(=-\frac{2}{3}x^5y^4z\)
b)
-Phần biến là \(x^5;y^4;z\)
-Bậc là 10
Thay x=1; y=-1 và z=3 vào biểu thức \(A=\frac{-2}{3}x^5y^4z\), ta được
\(\frac{-2}{3}\cdot1^5\cdot\left(-1\right)^4\cdot3=-2\)
Vậy: -2 là giá trị của biểu thức \(A+\left(\frac{3}{4}x^2yz\right)\cdot\left(-\frac{8}{9}x^2y^3x\right)\) tại x=1; y=-1 và z=3
Ta có: \(\frac{5}{3}x^2y^4-\frac{1}{7}x^3y^2-xy+\left(\frac{1}{7}x^3y^2-\frac{5}{3}x^2y^4+\frac{1}{3}xy\right)\)
\(=\frac{5}{3}x^2y^4-\frac{1}{7}x^3y^2-xy+\frac{1}{7}x^3y^2-\frac{5}{3}x^2y^4+\frac{1}{3}xy\)
\(=-xy+\frac{1}{3}xy\)
\(=xy\left(-1+\frac{1}{3}\right)=-\frac{2}{3}xy\)
Bậc của nó là 2
a) \(A=\frac{1}{2}x^2.\left(48xy^4\right).-\frac{1}{3}x^2.y^3\)
\(\Leftrightarrow A=\left(\frac{1}{2}\cdot48\cdot-\frac{1}{3}\right)\cdot\left(x^2\cdot x\cdot x^2\right)\cdot\left(y^4\cdot y^3\right)\)
\(\Leftrightarrow A=-6x^5y^7\)
Bậc của đơn thức A là 12
b) Thay \(x=\frac{1}{2};y=-1\) vào A, ta được :
\(\Leftrightarrow A=-6\cdot\left(\frac{1}{2}\right)^5\cdot\left(-1\right)^7\)
\(\Leftrightarrow A=-6\cdot\frac{1}{32}\cdot\left(-1\right)\)
\(\Leftrightarrow A=\frac{6}{32}=\frac{3}{16}\)
\(A=\frac{1}{2}xy^2-\frac{3}{4}y^2x-\frac{5}{6}xy^2\)
\(\Leftrightarrow A=\left(\frac{1}{2}-\frac{3}{4}-\frac{5}{6}\right)xy^2\)
\(\Leftrightarrow A=-\frac{13}{12}xy^2\)
Bậc của đơn thức A là 3
\(B=3x^4.x^2-\left(-2x^3\right)^2\)
\(\Leftrightarrow B=3x^6+2x^6\)
\(\Leftrightarrow B=5x^6\)
Bậc của đơn thức B là 6