Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right).\\ A=-\dfrac{1}{2}x^8y^5.\)
- Bậc: 8.
- Hệ số: \(-\dfrac{1}{2}.\)
- Biến: \(x;y.\)
\(B=\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right).\\ B=\dfrac{2}{3}x^8y^9.\)
- Bậc: 9.
- Hệ số: \(\dfrac{2}{3}.\)
- Biến: \(x;y.\)
\(a,A=\left(\dfrac{-3}{8}x^2y\right)\left(\dfrac{2}{3}xy^2z^2\right)\left(\dfrac{4}{5}x^3y\right)\\ =\left(\dfrac{-3}{8}.\dfrac{2}{3}.\dfrac{4}{5}\right)\left(x^2.x.x^3\right)\left(y.y^2.y\right).z^2\\ =\dfrac{-1}{5}x^6y^4z^2\)
b, Hệ số: \(-\dfrac{1}{5}\)
Biến: \(x^6y^4z^2\)
A Giải hộ e thêm đc k ạ
c) Tìm bậc của đơn thức a
d)Tính giá trị của đơn thức A tại x = -1 , y = -2 , z=3
1.
a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(\dfrac{1}{3}x^6y^5z\)
Deg=12
a: \(=\dfrac{1}{3}\cdot24\cdot4\cdot x^2\cdot xy\cdot xy=32x^4y^2\)
Phần biến là \(x^4;y^2\)
Bậc là 6
Hệ số là 32
b: \(=xy^2\cdot\left(-2\right)xy^3=-2x^2y^5\)
Phần biến là \(x^2;y^5\)
Bậc là 7
Hệ số là -2
c: \(=\dfrac{1}{5}x^2y^3z\cdot\dfrac{1}{8}x^3y^3z^3=\dfrac{1}{40}x^5y^6z^4\)
PHần biến là \(x^5;y^6;z^4\)
Bậc là 15
Hệ só là 1/40
d: \(=\dfrac{1}{3}\cdot ab\cdot xy\cdot a^2\cdot x^2y^4=\dfrac{1}{3}a^3b\cdot x^3y^5\)
Phần biến là \(x^3y^5\)
Hệ số là \(\dfrac{1}{3}a^3b\)
Bậc là 8
T giải thử thôi nhé :w
a) \(1\frac{1}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-2\frac{1}{3}xy\right)\)
\(=\frac{5}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-\frac{5}{2}xy\right)\)
\(=1.\frac{5}{4}x^2y\left(-\frac{5}{2}xy\right)\)
\(=-\frac{5}{4}x^2y.1.\frac{5}{2}xy\)
\(=-1.\frac{5}{4}.\frac{5}{2}x^3y^2\)
\(=-1.\frac{25x^3y^2}{8}\)
\(=-\frac{25x^3y^2}{8}\)
a) \(-\dfrac{2}{3}xy^2z.\left(-3x^2y\right)^2\)
= \(-\dfrac{2}{3}xy^2z.9x^4y^2\)
= \(-6x^5y^4z\)
b) \(x^2yz.\left(2xy\right)^2z\)
= \(x^2yz.4x^2y^2z\)
= \(4x^4y^3z^2\)
a) \(A=\left(\dfrac{1}{2^3}.3.\dfrac{13}{3}\right)\left(a^{3+2+1}\right)\left(x^{1+3}\right)\left(y^{1+2}\right)=\dfrac{13}{8}.a^6.x^4.y^3\)
\(B=\left[2^k.\left(-\dfrac{1}{2}\right)^2\right]\left(x^{2k+2}\right)\left(y^{3k+2.2}\right)\left(z^{4k+}\right)=2^{k-2}.x^{2\left(k+1\right)}.y^{3k+4}.z^{4k}\)
a: \(A=\dfrac{6}{7}x^2y^2\cdot\dfrac{-7}{2}x^2y=-3x^4y^3\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x}{-2}=\dfrac{y}{3}=\dfrac{x-y}{-2-3}=\dfrac{5}{-5}=-1\)
Do đó: x=2; y=-3
\(A=-3x^4y^3=-3\cdot2^4\cdot\left(-3\right)^3=3\cdot27\cdot16=81\cdot16=1296\)
\(A=\dfrac{6}{7}x^2y^2.\left(-3\dfrac{1}{2}x^2y\right)\)
\(=\dfrac{6}{7}x^2y^2.\left(-\dfrac{7}{2}\right)x^2y\)
\(=-3x^4y^3\)
b)Có: \(\dfrac{x}{y}=-\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{-y}{3}=\dfrac{x-y}{2+3}=\dfrac{5}{5}=1\)
\(\Rightarrow x=2;y=-3\)
Tại \(x=2;y=-3\) , giá trị của biểu thức là:
\(-3.2^4.\left(-3\right)^3=-3.16.\left(-27\right)=1296\)
Thu gọn đơn thức:
(-x^2y)^3.1/2x^2y^3.(-42/9xy^2z^2)
=(-x^6y^3).1/2x^2y^3.(-42/9xy^2z^2)
=(-1.1.-42/9).(x^6.x^2.x).(y^3.y^3.y^2).z^2
=42/9.x^9.y^8.z^2
Bậc của đơn thức:19
\(\left(-x^2y\right)^3.\dfrac{1}{2}x^2y^3.\left(\dfrac{-42}{9}xy^2z^2\right)\)
\(=\left(\dfrac{1}{2}.\dfrac{-42}{9}\right)\left(x.x^2.x\right).\left(y^3.y^3.y^2.\right).z^2\)
\(=\dfrac{-7}{3}x^4y^8z^2\)
=> Bậc của đơn thức là : 4 + 8 + 2 = 14
A=(2/3.3/5).(x^2.x).(y.y)
=2/5.x^3.y^2
B=4.(x^2.x^2).(y^2.y)
=4.x^4.y^3