K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2023

\(M=\left[x+\left(y-z\right)-2x\right]+y+z-\left(2-x-y\right)\)

\(=y-z-x+y+z-2+x+y\)

\(=3y-2\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

a)       

\(\begin{array}{l}N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\\ = \left( {5{y^2}{z^2} - 2{y^2}{z^2}} \right) + \left( { - 2x{y^2}z + x{y^2}z} \right) + \left( {\dfrac{1}{3}{x^4} + \dfrac{2}{3}{x^4}} \right)\\ = 3{y^2}{z^2} - x{y^2}z + {x^4}\end{array}\)

b)      Đa thức có 3 hạng tử là: \(3{y^2}{z^2}; - x{y^2}z;{x^4}\)

Xét hạng tử \(3{y^2}{z^2}\) có hệ số là 3, bậc là 2+2=4.

Xét hạng tử \( - x{y^2}z\) có hệ số là -1, bậc là 1+2+1=4.

Xét hạng tử \({x^4}\) có hệ số là 1, bậc là 4.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

a)

\(\begin{array}{l}P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z\\ = \left( {8{x^2}{y^2}z - 5{x^2}{y^2}z - 3{x^2}{y^2}z} \right) - 2xyz + 5{y^2}z + {x^2}{y^2}\\ =  - 2xyz + 5{y^2}z + {x^2}{y^2}\end{array}\)

Hạng tử có bậc cao nhất là \({x^2}{y^2}\) có bậc là 2 + 2 = 4 nên bậc của đa thức là 4.

b) Thay \(x =  - 4;y = 2;z = 1\) vào P ta được \(P =  - 2.\left( { - 4} \right).2.1 + {5.2^2}.1 + {\left( { - 4} \right)^2}{.2^2} = 16 + 20 + 64 = 100.\)

20 tháng 7 2017

1, đa thức đã cho \(\Leftrightarrow\left(2x-y\right)^2-2\left(2x-y\right)\left(x-y\right)+\left(x-y\right)^2=\left[\left(2x-y\right)-\left(x-y\right)\right]^2=\left(2x-y-x+y\right)^2=x^2\)

2, đa thức đã cho \(\Leftrightarrow\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left[\left(x-y+z\right)+\left(y-z\right)\right]^2=\left(x-y+z+y-z\right)^2=x^2\)

--- giải chi tiết lắm rồi đó---

20 tháng 7 2017

a, \(\left(2x-y\right)^2+2\left(2x-y\right)\left(y-x\right)+\left(x-y\right)^2\)

\(=4x^2-4xy+y^2+2\left(2xy-2x^2-y^2+xy\right)+x^2-2xy+y^2\)

\(=4x^2-4xy+y^2+4xy-4x^2-2y^2+2xy+x^2-2xy+y^2\)

\(=x^2\)

b, \(\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z\right)\left[1+2\left(y-z\right)\right]+y^2-2yz+z^2\)

\(=\left(x-y+z\right)\left(1+2y-2z\right)+y^2-2yz+z^2\)

\(=x+2xy-2xz-y-2y^2+2yz+z+2yz-2z^2+y^2-2yz+z^2\)

\(=x-y+z+2xy-2xz+2yz-y^2-z^2\)

Chúc bạn học tốt!!!

23 tháng 7 2017

\(\left(x+y+z\right)^2+\left(x+y-z\right)^2+\left(2x-y\right)^2\)

\(=x^2+y^2+z^2+2xy+2xz+2yz+\left(x+y-z\right)\left(x+y-z\right)+4x^2-4xy+y^2\)

\(=5x^2+2y^2+z^2-2xy+2xz+2yz+x^2+xy-xz+xy+y^2-yz-xz-yz+z^2\)

\(=6x^2+3y^2+2z^2\)

Chúc bạn học tốt!!!

7 tháng 11 2023

C. 2

7 tháng 11 2023

Thank ạ ❤

10 tháng 10 2021

\(z\left(y-x\right)+y\left(z-x\right)+x\left(y-z\right)\)

\(=zy-xz+yz-xy+xy-xz\)

\(=-2xz+2yz\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

\({y^3}{y^2}z = {y^5}z\)

\(\dfrac{1}{3}x{y^2}{x^3}z = \dfrac{1}{3}{x^4}{y^2}z\)

b: \(=\dfrac{12\left(y-z\right)^4+3\left(y-z\right)^5}{6\left(y-z\right)^2}=2\left(y-z\right)^2+\dfrac{1}{2}\left(y-z\right)^3\)