Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left(-\dfrac{1}{3}xy\right).\left(3x^2yz^2\right)=\left(-\dfrac{1}{3}.3\right).\left(x.x^2\right).\left(y.y\right).z^2=-x^3y^2z^2\), có hệ số là -1.
b)
\(-54y^2.bx=\left(-54.b\right).x.y^2=-54bxy^2\), có hệ số là -54b.
c)
\(-2x^2y.\left(-\dfrac{1}{2}\right)^2.x\left(y^2z\right)^3=-2x^2y.\left(\dfrac{1}{4}xy^6z^3\right)=\left(-2.\dfrac{1}{4}\right).\left(x^2x\right).\left(yy^6\right).z^3=-\dfrac{1}{2}x^3y^7z^3\), có hệ số là \(-\dfrac{1}{2}\).
a: \(=\dfrac{-1}{3}xy\cdot3x^2yz^2=-x^3y^2z^2\)
Hệ số là 01
b: Hệ số là -54b
c: \(=-2x^2y\cdot\dfrac{1}{4}\cdot x\cdot y^6z^3=-\dfrac{1}{2}x^3y^7z^3\)
Hệ số là -1/2
a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2
a) P= 2/3.x3y2.1/2.x2y5=1/3.x5y7
hệ số là 1/3
phần biến là x5y7
b) khi x= -1 và = 1
=>P = 1/3.(-1).1=-1/3
a) P= [(-2/3)^2.1/2].[(x^3)^2.x^2].[(y^2)^2.y^5]
= 2/9.x^8.y^9
hệ số là 2/9
phần biến là x^8.y^9
b) thay x = -1; y = 1 vào P có :
[-2/3.(-1)^3.1^2]^2.[1/2.(-1)^2.1^5]
=(4/9.1.1).(1/2.1.1)
=4/9.1/2
=2/9
a, \(2x^2y^2.\frac{1}{4}xy^3.\left(-3xy\right)\)
=\(\left[2.\frac{1}{4}.\left(-3\right)\right].\left(x^2.x.x\right)\left(y^2.y^3.y\right)\)
= \(\left(\frac{-3}{2}\right).x^4.y^6\)
= \(\frac{-3}{2}x^4y^6\)
\(\frac{-3}{2}\) là hệ số, \(x^4y^6\) là biến
b, \(\left(-2x^3y\right)^2.xy^2.\frac{1}{5}y^5\)
= \(\left[\left(-2\right)^2.1.\frac{1}{5}\right].\left(x^6.x\right).\left(y^2.y^2.y^5\right)\)
= \(\frac{4}{5}.x^7.y^9\)
= \(\frac{4}{5}x^7y^9\)
\(\frac{4}{5}\) là hệ số, \(x^7y^9\) là biến
Không chắc sẽ làm đung toàn bộ nhé '-'
a)\(2x^2y^2.\frac{1}{4}xy^3\left(-3xy\right)\)
= \(\left[2.\frac{1}{4}.\left(-3\right)\right]\).\(\left(x^2.x.x\right).\left(y^2.y^3.y\right)\)
=\(\frac{-2}{3}x^4y^6\)
Phần hệ số:\(\frac{-2}{3}\)
Phần biến:10
a: \(P=\dfrac{-2}{3}\cdot\dfrac{1}{2}x^3y^2\cdot x^2y^5=\dfrac{-1}{3}x^5y^7\)
Hệ số là -1/3
Phần biến là \(x^5;y^7\)
b: Khi x=-1 và y=1 thì \(P=\dfrac{-1}{3}\cdot\left(-1\right)^5\cdot1^7=\dfrac{1}{3}\)
a) $(\dfrac{-1}{3}xy)(3x^2yz^2)$
$=\dfrac{-1}{3}.3.x^2.x.y.y.z^2$
$=-1x^3y^2z^2$
Hệ số của đơn thức : -1
b) $-54y^2.b.x=-54bxy^2$
Hệ số của đơn thức : -54b
c) $-2x^2y.(\dfrac{-1}{2})^2x(y^2z)^3$
$=-2x^2y.\dfrac{1}{4}xy^6z^3$
$=-2.\dfrac{1}{4}.x^2.x.y.y^6.z^3$
$=\dfrac{-1}{2}x^3y^7z^3$
Hệ số của đơn thức : $\dfrac{-1}{2}$
Ta có: -2x2y.(- 1/2 )2 x(y2z)3
= -2x2y.1/4 x.y6z3 = (-2.1/4 ).(x2.x).(y.y6).z3 = - 1/2 x3y7z3
Hệ số của đơn thức bằng - 1/2.