Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\left(-\frac{5}{4}x^2y\right)\cdot\left(\frac{2}{5}x^3y^4\right)\)
\(=\left(-\frac{5}{4}\cdot\frac{2}{5}\right)\cdot\left(x^2\cdot x^3\right)\cdot\left(y\cdot y^4\right)\)
\(=\frac{-1}{2}x^5y^5\)
b) Hệ số là \(\frac{-1}{2}\), phần biến là \(x^5;y^5\); Bậc là 10
Bài 2:
a) Ta có: \(A+\left(\frac{3}{4}x^2yz\right)\cdot\left(-\frac{8}{9}x^2y^3x\right)\)
\(=\left(\frac{3}{4}\cdot\frac{-8}{9}\right)\cdot\left(x^2\cdot x^2\cdot x\right)\cdot\left(y\cdot y^3\right)\cdot z\)
\(=-\frac{2}{3}x^5y^4z\)
b)
-Phần biến là \(x^5;y^4;z\)
-Bậc là 10
Thay x=1; y=-1 và z=3 vào biểu thức \(A=\frac{-2}{3}x^5y^4z\), ta được
\(\frac{-2}{3}\cdot1^5\cdot\left(-1\right)^4\cdot3=-2\)
Vậy: -2 là giá trị của biểu thức \(A+\left(\frac{3}{4}x^2yz\right)\cdot\left(-\frac{8}{9}x^2y^3x\right)\) tại x=1; y=-1 và z=3
a,\(\Leftrightarrow2X^3Y^4Z^3\)
b,hệ số:\(2\)
biến:\(X^3Y^4Z^3\)
c,thay x=2,y=1,z=-1;ta có PT:
\(2.2^3.1^4.\left(-1\right)^3\)
\(\Leftrightarrow-16\)
a ) \(A=\left(-\frac{3}{7}x^2y^2z\right).\left(-\frac{42}{9}xy^2z^2\right)\)
\(=\left[\left(-\frac{3}{7}\right).\left(-\frac{42}{9}\right)\right]\left(x^2y^2z.xy^2z^2\right)\)
\(=2x^3y^4z^3\)
b ) \(A=2x^3y^4z^3\)có hệ số là 2 ; bậc là 10
c ) Thay x = 2; y = 1; z = - 1 vào biểu thức A ta được :
\(A=2.2^3.1^4.\left(-1\right)^3=2.8.\left(-1\right)=-16\)
Vậy giá trị của biểu thức A là - 16 tại x = 2; y = 1; z = - 1
A) \(D=-\frac{4}{3}x^5y^8z^3\)
b) \(D=-\frac{4}{3}\left(-1\right)^5.\left(\frac{1}{2}\right)^8.1^3=\frac{1}{192}\)
a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2
câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn