K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

\(2y.\left(x+y\right)+3x.\left(x-y\right)+5\)

\(=2xy+2y^2+3x^2-3xy+5\)

\(=3x^2-xy+2y^2+5\)

18 tháng 10 2020

\(2y\left(x+y\right)+3x\left(x-y\right)+5\)

\(=2yx+2y^2+3x^2-3xy+5\)

\(=2y^2+3x^2-xy+5\)

15 tháng 6 2021

\(a,2\left(x-1\right)\left(x+1\right)+\left(x-1\right)^2+\left(x+1\right)^2\)

\(=2\left(x^2-1\right)+x^2-2x+1+x^2+2x+1\)

\(=2x^2-2+2x^2+2=4x^2\)

\(b,\left(x-y+1\right)^2+\left(1-y\right)^2+2\left(x-y+1\right)\left(y-1\right)\)

\(=\left(x-y+1\right)^2+2\left(x-y+1\right)\left(y-1\right)+\left(y-1\right)^2\)

\(=\left[\left(x-y+1\right)+\left(y-1\right)\right]^2\)

\(=\left[x-y+1+y-1\right]^2=x^2\)

đề cuối phải sửa cái cuối thành \(\left(3x+5\right)^2\) 

\(c,\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2=\left[3x+1-3x-5\right]^2=16\)

 

18 tháng 12 2022

a: =18x^3y^2-12x^3y^3+6x^2y^2

b: (-3x+2)(5x^2-1/3x+4)

=-12x^3+x^2-12x+10x^2-2/3x+8

=-12x^3+11x^2-38/3x+8

c: =x^2-x-2+3x-x^2

=2x-2

d: =4x^2+12x+9-4x^2+25-(x-1)(x^2+12)

=12x+34-x^3-12x+x^2+12

=-x^3+x^2+46

a: =12x^3y^2-12x^3y^3+6x^2y^2

b: =\(\left(-3x+2\right)\left(5x^2-\dfrac{1}{3}x+4\right)\)

=-15x^3+x^2-12x+10x^2-2/3x+8

=-15x^3+11x^2-38/3x+8

c: =x^2-x-2+3x-x^2

=2x-2

\(B=\left(x+3y\right)\left(x-3y\right)-y\left(x+9y\right)\)

\(=x^2-9y^2-xy-9y^2\)

\(=x^2-xy\)

\(C=\left(3x-9\right)\left(x^2+3x+9\right)-3x\left(x^2-2\right)\)

\(=3x^3-81-3x^3+6x\)

=6x-81

2 tháng 9 2021

A ơi cái -9y^2 -xy -9y^2 thì nó phải là -18y^2 chứ ạ?

22 tháng 10 2023

b: (x-y)(x^2-2x+y)

\(=x^3-2x^2+xy-x^2y+2xy-y^2\)

\(=x^3-2x^2-x^2y+3xy-y^2\)

c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)

\(=x^2y^2-xy\)

d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)

\(=6x^2y-3xz-5x^2y+10y+3xz\)

\(=x^2y+10y\)

10 tháng 7 2023

\(\left(x+2y\right)^2-\left(x-2y\right)^2\\ =\left[\left(x+2y\right)-\left(x-2y\right)\right]\left[\left(x+2y\right)+\left(x-2y\right)\right]\\ =\left(x+2y-x+2y\right)\left(x+2y+x-2y\right)\\ =4y.\left(2x\right)\\ =8xy\)

\(\left(3x+y\right)^2+\left(x-y\right)^2\\ =\left[\left(3x\right)^2+2.3x.y+y^2\right]+\left(x^2-2xy+y^2\right)\\ =6x^2+6xy+y^2+x^2-2xy-y^2\\ =7x^2+4xy\)

\(-\left(x+5\right)^2-\left(x-3\right)^2\\ =-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\\ =-x^2-10x-25-x^2+6x-9\\ =-2x^2-4x-34\)

\(\left(3x-2\right)^2-\left(3x-1\right)^2\\ =\left[\left(3x-2\right)-\left(3x-1\right)\right]\left[\left(3x-2\right)+\left(3x-1\right)\right]\\ =\left(3x-2-3x+1\right)\left(3x-2+3x-1\right)\\ =-1.\left(6x-3\right)\\ =-6x+3\)

24 tháng 11 2021

(-3*x-1)*y+3*x^2+x

`#3107`

`a)`

`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`

`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`

`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`

`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`

`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`

`= (12x + y - 2)(2 - y + 2 + y)`

`= (12x + y - 2)*4`

`= 48x + 4y - 8`

`b)`

\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)

`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`

`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`

`= - 51`

`c)`

\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)

`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`

`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`

`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`

`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`

`= 1`

`d)`

\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)

`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`

`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`

`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`

`= x^6 + 16x^4 - 24x^2 - 128`