Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(E=\frac{1}{\sqrt{2}-\sqrt{3}}\cdot\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
\(=\frac{1}{\sqrt{2}-\sqrt{3}}\cdot\sqrt{\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}}\)
\(=\frac{1}{\sqrt{2}-\sqrt{3}}\cdot\sqrt{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}\)
\(=-\frac{1}{\sqrt{3}-\sqrt{2}}\cdot\sqrt{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}\)
\(=-\sqrt{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\cdot\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}}\)
\(=-\sqrt{\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}}\)
\(=-\sqrt{\frac{1}{3-2}}=-1\)
A = (2 + √2)/(1 + √2)
= √2(√2 + 1)/(1 + √2)
= √2
C = (2√3 - √6)/(√8 - 2)
= √6(√2 - 1)/[2(√2 - 1)]
= √6/2
E = (x√x + 1)/(√x + 1)
= (√x + 1)(x - √x + 1)/(√x + 1)
= x - √x + 1
A = $\frac{2 + \sqrt{2}}{1 + \sqrt{2}}$
Để rút gọn biểu thức này, ta nhân tử và chia tử cho $1 - \sqrt{2}$:
A = $\frac{(2 + \sqrt{2})(1 - \sqrt{2})}{(1 + \sqrt{2})(1 - \sqrt{2})}$
A = $\frac{-2\sqrt{2}}{-1}$
A = $2\sqrt{2}$
C = $\frac{2\sqrt{3} - \sqrt{6}}{\sqrt{8} - 2}$
Ta nhân tử và chia tử cho $\sqrt{2}$:
C = $\frac{(2\sqrt{3} - \sqrt{6})\sqrt{2}}{(\sqrt{8} - 2)\sqrt{2}}$
C = $\frac{4\sqrt{6} - 2\sqrt{3}}{2\sqrt{2}}$
C = $\frac{2\sqrt{6} - \sqrt{3}}{\sqrt{2}}$
Ta nhân tử và chia tử cho $\sqrt{6} + \sqrt{2}$:
C = $\frac{(2\sqrt{6} - \sqrt{3})(\sqrt{6} + \sqrt{2})}{(\sqrt{2})(\sqrt{6} + \sqrt{2})}$
C = $\frac{12 - 3\sqrt{2}}{2}$
C = $6 - \frac{3\sqrt{2}}{2}$
E = $\frac{x\sqrt{x+1}}{\sqrt{x+1}}$
E = $x\sqrt{\frac{x+1}{x+1}}$
E = $x$.
\(=\dfrac{2\left(\sqrt{3}+\sqrt{2}\right)}{3-2}+\dfrac{3-2\sqrt{2}}{9-8}=2\sqrt{3}+2\sqrt{2}+3-2\sqrt{2}=3+2\sqrt{3}\)
ĐKXĐ: \(x\ge0,x\ne1\)
\(\left(\dfrac{6\sqrt{x}+6}{x+2\sqrt{x}-3}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}+3}\)
\(=\left(\dfrac{6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right).\left(\sqrt{x}+3\right)\)
\(=\dfrac{6\sqrt{x}+6-\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}.\left(\sqrt{x}+3\right)\)
\(=\dfrac{-x+\sqrt{x}}{\sqrt{x}-1}=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-\sqrt{x}\)
Q=\(\frac{1}{\sqrt{2}-\sqrt{3}}\)\(\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)=\(\frac{1}{\sqrt{2}-\sqrt{3}}\).\(\sqrt{\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}}\)=\(\frac{1}{\sqrt{2}-\sqrt{3}}\)\(\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)}}\)=\(\frac{1}{\sqrt{2}-\sqrt{3}}\)\(\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{3-2}}\)=\(\frac{1}{\sqrt{2}-\sqrt{3}}\).\(\left(\sqrt{3}-\sqrt{2}\right)^{ }\)=-1
\(A=P:Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}:\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}=1+\dfrac{-5}{\sqrt{x}+4}\)
Điều kiện : \(x\ge4\Rightarrow\sqrt{x}+4\ge4\Rightarrow-\dfrac{5}{\sqrt{x}+4}\le-\dfrac{5}{4}\Rightarrow\dfrac{5}{\sqrt{x}+4}\ge\dfrac{5}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x=0\)
Vậy \(min_A=\dfrac{5}{4}\Leftrightarrow x=0\)
a: ĐKXĐ: x>0
\(E=\dfrac{\sqrt{x}}{x+2\sqrt{x}}:\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
\(=\dfrac{1}{\sqrt{x}+2}:\dfrac{\sqrt{x}+2+x}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{1}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x+\sqrt{x}+2}=\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
b: E=2/5
=>\(\dfrac{\sqrt{x}}{x+\sqrt{x}+2}=\dfrac{2}{5}\)
=>\(5\sqrt{x}=2x+2\sqrt{x}+4\)
=>\(2x-3\sqrt{x}+4=0\)
=>\(x-\dfrac{3}{2}\cdot\sqrt{x}+2=0\)
=>\(x-2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{23}{16}=0\)
=>\(\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{23}{16}=0\)(vô lý)
Vậy: \(x\in\varnothing\)