Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
– Hàm số y = f(x) có tập xác định D được gọi là hàm số chẵn nếu thỏa mãn hai điều kiện:
+ ∀ x ∈ D thì –x ∈ D
+ f(–x) = f(x).
– Hàm số y = f(x) có tập xác định D được gọi là hàm số lẻ nếu thỏa mãn hai điều kiện:
+ ∀ x ∈ D thì –x ∈ D
+ f(–x) = –f(x).
Mệnh đề nào sau đây là sai?
A. Đồ thị hàm số chẵn nhận gốc tọa độ làm tâm đối xứng.
B. Đồ thị hàm số chẵn nhận trục tung làm trục đối xứng.
C. Đồ thị hàm số lẻ nhận gốc tọa độ là tâm đối xứng.
D. Một hàm số không nhất thiết phải là hàm số chẵn hoặc hàm số lẻ
Tập xác định của hàm số y = 1 x + 3 là D = ℝ \ - 3 .
Nhận thấy 3 ∈ D, nhưng -3 ∉ D.
Vậy hàm số y = 1 x + 3 không chẵn và không lẻ.
Xét hàm số y = x3 +x
Tập xác định : D= R
∀ x ∈ D ⇒ - x ∈ D
Ta có: f(-x) = (-x)3 + (- x) = -x3 – x = - f(x)
Do đó, hàm số y= x3 + x là hàm số lẻ.
Xét đáp án A.
Tập xác định: D = R suy ra x thuộc D thì –x cũng thuộc D.
f(-x) = |-x + 1| + |-x – 1| = |x + 1| + |x – 1| = f(x) suy ra f(x) là hàm số chẵn.
Chọn A.
Cho hàm số y = f(x) có tập xác định D
Nếu \(\forall x\) ∈ D, ta có -x ∈ D và f(-x) = f(x) thì f(x) là hàm số chẵn trên D.
Nếu \(\forall x\) ∈ D, ta có -x ∈ D và f(-x) = -f(x) thì f(x) là hàm số lẻ trên D.