Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{xy}=10.x+y\) Khi đó \(\dfrac{\overline{xy}}{x+y}=\dfrac{10x+y}{x+y}\)
Mặt khác \(\dfrac{10x+y}{x+y}=\dfrac{100x+10y}{10\left(x+y\right)}=\dfrac{19\left(x+y\right)+81x-9y}{10\left(x+y\right)}=\dfrac{19}{10}+\dfrac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\dfrac{19}{10}\)
Do đó, \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất bằng \(\dfrac{19}{10}\) khi \(9x-y=0\) hay \(x=1,y=9\)
Vậy số cần tìm là 19
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá