Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{\left(x^2-yz\right)^2}{a^2}=\dfrac{\left(y^2-zx\right)\left(z^2-xy\right)}{bc}\) mà a2 = bc nên:
\(\left(x^2-yz\right)^2=\left(y^2-zx\right)\left(z^2-xy\right)\).
\(\Leftrightarrow x^4+y^2z^2-2x^2yz=y^2z^2+x^2yz-xy^3-xz^3\)
\(\Leftrightarrow x^4+xy^3+xz^3-3x^2yz=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3+y^3+z^3=3xyz\end{matrix}\right.\).
Rõ ràng nếu \(x^3+y^3+z^3=3xyz\) thì \(x=y=z\) (tính chất quen thuộc). Do đó \(\dfrac{x^2-yz}{a}=0\) (vô lí).
Do đó x = 0.
Kết hợp với x + y + z = 2010 thì y + z = 2010.
Rõ ràng với mọi x, y, z thỏa mãn y + z = 2010 và x = 0 thì ta thấy thỏa mãn đk bài toán.
Vậy...
Cậu vào phần thống kê câu trả lời của mk ấy, ngay câu đầu tiên
tham khảo nha: Câu hỏi của Nguyễn Thị Phương Thảo - Toán lớp 8 - Học toán với OnlineMath
Ta có: x + y + z = 0
=> x = -y - z
=> x2 = (-y - z)2
=> x2 = y2 + 2yz + z2
=> x2 - y2 - z2 = 2yz
CMTT: y2 = x2 + 2xz + z2 => y2 - z2 - x2 = 2xz
z2 = x2 + 2xy + y2 => z2 - x2 - y2 = 2xy
Khi đó, ta có:M = \(\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}\)
M = \(\frac{x^3+y^3+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)\left(x^2+2xy+y^2\right)-3xy\left(x+y\right)+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)
M = \(\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+x^2\right]-3xy\left(x+y\right)}{2xyz}\)(do x + y + z = 0)
M = \(\frac{-3xy.z}{2xyz}=-\frac{3}{2}\) (do x + y = -z)
Sửa lại kq M = 3/2 (thay dòng cuối) (-3xy.z --> -3xy(-z)) n/b
\(x+y+z=0\Leftrightarrow x^2+y^2+z^2+2xy+2x+2yz=0\)
\(\Leftrightarrow x^2+y^2+z^2=-2xy-2yz-2xz\)
Có:
\(P=\frac{18\left(x^2+y^2+z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)-2xy-2xz-2yz}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)
\(\Leftrightarrow x^2+y^2+z^2=-2xy-2yz-2xz\)
\(P=\frac{18\left(x^2+y^2+z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)-2xy-2xz-2yz}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)