Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu vào phần thống kê câu trả lời của mk ấy, ngay câu đầu tiên
tham khảo nha: Câu hỏi của Nguyễn Thị Phương Thảo - Toán lớp 8 - Học toán với OnlineMath
- Với xyz \(\ne\) 0 ta có:
x + y + z = 0 \(\Leftrightarrow\)\(\hept{\begin{cases}y+z=-x\\x+y=-z\\x+z=-y\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}(y+z)^2=(-x)^2\\(x+y)^2=(-z)^2\\(x+z)^2=(-y)^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+2yz+z^2=x^2\\x^2+2xy+y^2=z^2\\x^2+2xz+z^2=y^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+z^2-x^2=-2yz\\x^2+y^2-z^2=-2xy\\x^2+z^2-y^2=-2xz\end{cases}}\)
Thay vào P ta được:
P=\(\frac{1}{-2yz}\)\(+\)\(\frac{1}{-2xy}\)\(+\)\(\frac{1}{-2xz}\)\(=\)\(\frac{-x}{2xyz}\)\(+\)\(\frac{-z}{2xyz}\)\(+\)\(\frac{-y}{2xyz}\)\(=\)\(\frac{-(x+y+z)}{2xyz}\)\(=\)0 \((x+y+z=0)\)
Vậy với \(x+y+z=0\)và \(xyz\ne0\)thì \(P=0\)
\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\\ =\frac{x}{y-z}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right)\\ =\frac{x}{\left(y-x\right)^2}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right).\frac{1}{y-x}=\frac{-xy+y^2-z^2+xz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(1\right)\)
Tự làm với 2 phân thức còn lại, ta có:
\(\frac{y}{\left(z-x\right)^2}=\frac{-x^2+z^2+xy-yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(2\right)\)
\(\frac{z}{\left(x-y\right)^2}=\frac{x^2-y^2-xz+yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(3\right)\)
Cộng 3 vế lại với nhau ta có: \(Q=\frac{x}{\left(y-x\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)
Bạn có thể sử dụng BĐT thức Cô-si và xét trường hợp dấu bằng xảy ra nhé bạn !
Câu hỏi của Trần Ngọc Tú - Toán lớp 8 - Học toán với OnlineMath
\(x+y+z=0\) => \(x+y=-z\) => \(\left(x+y\right)^2=z^2\)
=> \(x^2+2xy+y^2=z^2\)
=> \(z^2-x^2-y^2=2xy\)
Tương tự:
\(x^2-y^2-z^2=2yz\)
\(y^2-z^2-x^2=2zx\)
Thay vào tính M ta có:
\(M=\frac{x^2}{2yz}+\frac{y^2}{2zx}+\frac{z^2}{2xy}\)
\(=\frac{1}{2}\left(\frac{x^3+y^3+z^3}{xyz}\right)\) (*)
Ta lại có: x + y + z = 0
=> x + y = -z => \(\left(x+y\right)^3=-z^3\)
=> \(x^3+3x^2y+3xy^2+y^3=-z^3\)
=> \(x^3+y^3+z^3=-3x^2y-3xy^2\)
=> \(x^3+y^3+z^3=-3xy\left(x+y\right)\)
=> \(x^3+y^3+z^3=-3xy\left(-z\right)\) (vì x + y = -z)
=> \(x^3+y^3+z^3=3xyz\)
Thay vào (*) ta có:
\(M=\frac{1}{2}\frac{3xyz}{xyz}=\frac{3}{2}\)
Ta có
\(x+y+z+\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}=x+y+z\)
=> \(x+\frac{x^2}{y+z}+y+\frac{y^2}{z+x}+z+\frac{z^2}{y+x}=x+y+z\)
=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+x}=x+y+z\)
=> \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}=1\)
Vì x+y+z=0=>x=-y-z;y=-x-z;z=-x-y
\(\Rightarrow\)\(\frac{x^2}{y^2+z^2-\left(y+z\right)^2}+\frac{y^2}{z^2+x^2-\left(x+z\right)^2}+\frac{z^2}{x^2+y^2-\left(x+y\right)^2}\)
\(=\frac{x^2}{y^2+z^2-y^2+2yz+z^2}+\frac{y^2}{z^2+x^2-x^2+2xz+z^2}+\frac{z^2}{x^2+y^2-x^2+2xy+y^2}\)
\(=\frac{x^2}{2z^2+2yz}+\frac{y^2}{2x^2+2xz}+\frac{z^2}{2y^2+2xy}\)
Vì \(x+y+z=0\Rightarrow x=-y-z;y=-x-z;z=-x-y\)
\(\Rightarrow\frac{x^2}{y^2+z^2-\left(y+z\right)^2}+\frac{y^2}{z^2+x^2-\left(x+z\right)^2}+\frac{z^2}{x^2+y^2-\left(x+y\right)^2}\)
\(\Rightarrow\frac{x^2}{y^2+z^2-y^2+2yz+z^2}+\frac{y^2}{z^2+x^2-x^2+2xz+z^2}+\frac{z^2}{x^2+y^2-x^2+2xy+y^2}\)
\(\Rightarrow\frac{x^2}{2z^2+2yx}+\frac{y^2}{2x^2+2xz}+\frac{z^2}{2y^2+2xy}\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^2=z^2\Rightarrow x^2+y^2+2xy=z^2\)
\(\Rightarrow x^2+y^2=z^2-2xy\)
Tương tự ta có : \(y^2+z^2=x^2-2yz\)
\(x^2+z^2=y^2-2xz\)
Thay vào biểu thức ta có :
\(A=\frac{x^2}{y^2+z^2-x^2}+\frac{y^2}{x^2+z^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)
\(=\frac{x^2}{x^2-2yz-x^2}+\frac{y^2}{y^2-2xz-y}+\frac{z^2}{z^2-2xy-z^2}\)
\(=-\frac{x^2}{2yz}-\frac{y^2}{2xz}-\frac{z^2}{2xy}\)
\(=\frac{-x^3-y^3-z^3}{2xyz}=-\frac{x^3+y^3+z^3}{2xyz}\)
\(=\frac{3xyz}{2xyz}=-\frac{3}{2}\)
Chỗ \(x^3+y^3+z^3=3xyz\)là do \(x+y+z=0\)nhé, bạn cần chứng minh không ?
Ta có: x + y + z = 0
=> x = -y - z
=> x2 = (-y - z)2
=> x2 = y2 + 2yz + z2
=> x2 - y2 - z2 = 2yz
CMTT: y2 = x2 + 2xz + z2 => y2 - z2 - x2 = 2xz
z2 = x2 + 2xy + y2 => z2 - x2 - y2 = 2xy
Khi đó, ta có:M = \(\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}\)
M = \(\frac{x^3+y^3+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)\left(x^2+2xy+y^2\right)-3xy\left(x+y\right)+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)
M = \(\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+x^2\right]-3xy\left(x+y\right)}{2xyz}\)(do x + y + z = 0)
M = \(\frac{-3xy.z}{2xyz}=-\frac{3}{2}\) (do x + y = -z)
Sửa lại kq M = 3/2 (thay dòng cuối) (-3xy.z --> -3xy(-z)) n/b