\(\text{a(b+c-a)^2+ b(c+a-b)^2 + c(a+b-c)^2 + (a+b-c)(b+c-a)(c+a-b)}\)                   ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 7 2021

Lời giải:

Đặt đa thức đã cho là $P(a,b,c)$

Ta có:
$P(0,b,c)=b(c-b)^2+c(b-c)^2+(b-c)(b+c)(c-b)$

$=(b+c)(c-b)^2-(b+c)(b-c)^2=0$

$P(a,0,c)=a(c-a)^2+c(a-c)^2+(a-c)(c-a)(a+c)=0$

$P(a,b,0)=a(b-a)^2+b(a-b)^2+(a+b)(b-a)(a-b)=0$

Điều đó nghĩa là $a,b,c$ là nghiệm của $P(a,b,c)$

Do đó: 
$P(a,b,c)=Aabc$

Thay $a=b=1, c=2$ ta có:

$8=2A\Rightarrow A=4$

Vậy $P=4abc$

 

13 tháng 8 2020

Đặt \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=A\)

Ta có:\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

<=> \(\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)

<=> \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(b-c\right)\left(c-a\right)}+\frac{c}{\left(b-c\right)\left(a-b\right)}+\frac{a}{\left(b-c\right)\left(c-a\right)}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)\left(c-a\right)}+\frac{a}{\left(a-b\right)\left(b-c\right)}+\frac{b}{\left(a-b\right)\left(c-a\right)}+\frac{c}{\left(a-b\right)^2}=0\)

<=> \(A+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}+\frac{c+b}{\left(a-b\right)\left(c-a\right)}=0\)

<=> \(A+\frac{\left(a+b\right)\left(a-b\right)+\left(c-a\right)\left(c+a\right)+\left(c+b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

<=> \(A+\frac{a^2-b^2+c^2-a^2+b^2-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

<=> \(A=0\)

=> ....

20 tháng 6 2019

a) \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b=c\)

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

+) vế 1 bđt \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

+) vế 2 bđt \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

Từ đây ta có đpcm

Dấu "=" \(\Leftrightarrow a=b=c\)

c) \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b\)