Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+2}=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\) ta được:
\(2a^2-b^2=ab\)
\(\Leftrightarrow\left(a-b\right)\left(2a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=-b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\8a^3=-b^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(vô-nghiệm\right)\\8\left(x+2\right)=-\left(x-2\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-\dfrac{14}{9}\)
b.
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{matrix}\right.\)
\(\Rightarrow a^2+4b^2=5ab\)
\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\a^3=64b^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}65+x=65-x\\65+x=64\left(65-x\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
Đặt \(a=\sqrt[3]{65+x},b=\sqrt[3]{65-x}\) thì phương trình viết thành
\(a^2+4b^2=5ab\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0.\)
Suy ra \(a=b\) hoặc \(a=4b\)
Trường hợp 1. Nếu \(a=b\Leftrightarrow x=0.\) Khi đó \(A=5\cdot\sqrt[3]{65^2}\)
Trường hợp 2. Nếu \(a=4b\Leftrightarrow65+x=65\left(65-x\right)\Leftrightarrow66x=65\cdot64\Leftrightarrow x=\frac{65\cdot64}{66}\) Khi đó \(A=5\cdot65\sqrt[3]{\frac{4}{66^2}}\)
a) Đặt \(\sqrt[3]{65+x}=a;\sqrt[3]{65-x}=b\)
Nhận xét x = 65 không phải là nghiệm. Xét x khác 65 thì \(b\ne0\)
PT \(\Leftrightarrow a^2+b^2-5ab=0\)
\(\Leftrightarrow\left(\frac{a}{b}\right)^2-5\left(\frac{a}{b}\right)+1=0\Leftrightarrow t^2-5t+1=0\left(\text{đặt }t=\frac{a}{b}\right)\)
Hình như chị ghi đề sai, số quá xấu:((
a/ Nghiệm xấu quá
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{matrix}\right.\) ta được:
\(a^2+b^2=5ab\Leftrightarrow a^2-5ab+b^2=0\)
\(\Leftrightarrow\left(a-\frac{5+\sqrt{21}}{2}b\right)\left(a-\frac{5-\sqrt{21}}{2}b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\frac{5+\sqrt{21}}{2}b\\a=\frac{5-\sqrt{21}}{2}b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{65+x}=\frac{5+\sqrt{21}}{2}\sqrt[3]{65-x}\\\sqrt[3]{65+x}=\frac{5-\sqrt{21}}{2}\sqrt[3]{65-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}65+x=\left(\frac{5+\sqrt{21}}{2}\right)^3\left(65-x\right)\\65+x=\left(\frac{5-\sqrt{21}}{2}\right)^3\left(65-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(56+12\sqrt{21}\right)x=65\left(54+12\sqrt{21}\right)\\\left(56-12\sqrt{21}\right)x=65\left(54-12\sqrt{21}\right)\end{matrix}\right.\) \(\Rightarrow x=...\)
b/ \(\Leftrightarrow\sqrt[3]{x-5}+\sqrt[3]{2x-1}=\sqrt[3]{3x+2}-2\)
\(\Leftrightarrow3x-6+3\sqrt[3]{\left(x-5\right)\left(2x-1\right)}\left(\sqrt[3]{3x+2}-2\right)=3x-6-6\sqrt[3]{3x+2}\left(\sqrt[3]{3x+2}-2\right)\)
\(\Leftrightarrow\sqrt[3]{\left(x-5\right)\left(2x-1\right)}\left(\sqrt[3]{3x+2}-2\right)=-2\sqrt[3]{3x+2}\left(\sqrt[3]{3x+2}-2\right)\)
\(\Leftrightarrow\left(\sqrt[3]{3x+2}-2\right)\left(\sqrt[3]{\left(x-5\right)\left(2x-1\right)}+2\sqrt[3]{3x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=8\Rightarrow x=2\\\left(x-5\right)\left(2x-1\right)=-8\left(3x+2\right)\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2-13x+21=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-\frac{7}{2}\end{matrix}\right.\)
b, ĐKXĐ: \(x\ge\frac{5}{2}\)
\(pt\Leftrightarrow\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\sqrt{2x-5}=3\)
\(\Leftrightarrow x=7\left(tm\right)\)
a, ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{x-5+4\sqrt{x-5}+4}+\sqrt{x-5+8\sqrt{x-5}+16}=0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-5}+2\right)^2}+\sqrt{\left(\sqrt{x-5}+4\right)^2}=0\)
\(\Leftrightarrow2\sqrt{x-5}+6=0\)
\(\Leftrightarrow\sqrt{x-5}=-3\)
Phương trình vô nghiệm
Dat \(a=\sqrt[3]{65+x},b=\sqrt[3]{65-x}\)
Bien doi PT thanh \(a^2+4b^2=5ab\)
\(\Leftrightarrow a^2-5ab+4b^2=0\)
\(\Leftrightarrow\left(a^2-ab\right)-\left(4ab-4b^2\right)=0\)
\(\Leftrightarrow a\left(a-b\right)-4b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a=4b\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\sqrt[3]{65+x}=\sqrt[3]{65-x}\)
\(\Leftrightarrow65+x=65-x\)
\(\Leftrightarrow x=0\left(n\right)\)
\(\left(2\right)\Leftrightarrow\sqrt[3]{65+x}=4\sqrt[3]{65-x}\)
\(\Leftrightarrow65+x=64.65-64x\)
\(\Leftrightarrow65x=64.65-65\)
\(\Leftrightarrow x=63\left(n\right)\)
Vay nghiem cua PT la \(x=0,x=63\)
Nhận thấy \(x^2+y^2=0\) không phải nghiệm, chia vế cho vế:
\(\frac{x^2+xy+y^2}{x^2-xy+y^2}=\frac{185}{65}=\frac{37}{13}\)
\(\Leftrightarrow13x^2+13xy+13y^2=37x^2-37xy+37y^2\)
\(\Leftrightarrow12x^2-25xy+12y^2=0\)
\(\Leftrightarrow\left(4x-3y\right)\left(3x-4y\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}y\\x=\frac{4}{3}y\end{matrix}\right.\)
- Với \(x=\frac{3}{4}y\) thay vào pt dưới:
\(\left(\frac{9}{16}y^2-\frac{3}{4}y^2+y^2\right)\sqrt{\frac{9}{16}y^2+y^2}=65\)
\(\Leftrightarrow\frac{65}{64}y^2.\left|y\right|=65\Leftrightarrow y^2\left|y\right|=64\Rightarrow y=\pm4\Rightarrow x=...\)
- Với \(x=\frac{4}{3}y\) tương tự...
Lập phương 2 vế ta đc
\(\left(65+x\right)^2+64\left(65-x\right)^2+3\sqrt[3]{64\left(65-x\right)^2\left(65+x\right)^x}.\left(\sqrt[3]{\left(65+x\right)^2}+\sqrt[3]{\left(65-x\right)^2}\right)=125\left(65^2-x^2\right)\)
<=>\(65x^2-8190x+274625+3\sqrt[3]{64\left(65^2-x^2\right)}.\sqrt[3]{65^2-x^2}=125\left(65^2-x^2\right)\)\(65x^2-8190x+274625+3.4.\sqrt[3]{65^2-x^2}=125\left(65^2-x^2\right)\)
Đặt
\(\sqrt[3]{\left(65+x\right)}=a;\sqrt[3]{65-x}=b\) => \(a^3+b^3=130\) ta có Hpt :
\(a^2+4b^2=5ab\) (1)
\(a^3+b^3=130\) (2)
từ pt (1) => a = b Hoặc a = 4b
Thay vào pt (2) tìm ra b => a