Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Hệ điều kiện: \(\left\{{}\begin{matrix}2x^2+3>x^2+mx+1\\x^2+mx+1>0\end{matrix}\right.\) \(\forall x\in R\)
Xét BPT đầu tiên:
\(\Leftrightarrow x^2-mx+2>0\) \(\forall x\)
\(\Leftrightarrow\Delta=m^2-8< 0\Rightarrow-2\sqrt{2}< m< 2\sqrt{2}\)
Xét BPT thứ 2:
\(x^2+mx+1>0\)
\(\Leftrightarrow\Delta=m^2-4< 0\Rightarrow-2< m< 2\)
Kết hợp lại ta được \(-2< m< 2\)
Câu 2:
\(\left|x+2+\left(y-3\right)i\right|=2\sqrt{2}\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2=8\)
\(\Rightarrow\) Quỹ tích z là các điểm \(M\left(x;y\right)\) nằm trên đường tròn (C) tâm \(I\left(-2;3\right)\) bán kính \(R=2\sqrt{2}\)
Gọi \(A\left(-1;-6\right);B\left(7;2\right)\) và \(C\left(3;-2\right)\) là trung điểm AB
\(\Rightarrow P=\left|z+1+6i\right|+\left|z-7-2i\right|=MA+MB\)
Gọi d là đường thẳng qua C và I, cắt đường tròn (C) tại D trong đó I nằm giữa C và D
\(\Rightarrow P_{max}\) khi \(M\equiv D\)
\(\overrightarrow{CI}=\left(-5;5\right)\Rightarrow\) đường thẳng CI nhận \(\overrightarrow{n_{CI}}=\left(1;1\right)\) là 1 vtpt
\(\Rightarrow\)Phương trình CI: \(x+y-1=0\)
Tọa độ D là nghiệm: \(\left\{{}\begin{matrix}\left(x+2\right)^2+\left(y-3\right)^2=8\\x+y-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-4\end{matrix}\right.\)
\(\Rightarrow y=1-x=5\Rightarrow\left\{{}\begin{matrix}x=-4\\y=5\end{matrix}\right.\)
\(log\left(5\left(x^2+1\right)\right)\ge log\left(mx^2+4x+m\right)\)
- BPT đúng \(\forall x\Rightarrow log\left(mx^2+4x+m\right)\) xác định \(\forall x\in R\)
\(\Rightarrow mx^2+4x+m>0\) \(\forall x\in R\)
\(\Rightarrow\left\{{}\begin{matrix}a=m>0\\\Delta'=4-m^2< 0\end{matrix}\right.\) \(\Rightarrow m>2\) (1)
- Lại có \(x^2+1\ge1\) \(\forall x\)
\(\Rightarrow5\left(x^2+1\right)\ge mx^2+4x+m\)
\(\Leftrightarrow5\left(x^2+1\right)-4x\ge m\left(x^2+1\right)\)
\(\Leftrightarrow5-\dfrac{4x}{x^2+1}\ge m\)
Đặt \(f\left(x\right)=5-\dfrac{4x}{x^2+1}\Rightarrow f\left(x\right)\ge m\) \(\forall x\Leftrightarrow m\le min\left(f\left(x\right)\right)\)
Ta có \(f\left(x\right)=3+2-\dfrac{4x}{x^2+1}=3+\dfrac{2\left(x-1\right)^2}{x^2+1}\ge3\)
\(\Rightarrow min\left(f\left(x\right)\right)=3\Rightarrow m\le3\) (2)
Kết hợp (1), (2) \(\Rightarrow2< m\le3\Rightarrow m=3\)
Vậy có 1 giá trị nguyên duy nhất của m để BPT đúng với mọi x
Đáp án B