K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

Chọn D

1 tháng 11 2017

+ Ta có hàm số g(x) = x 3   - 3 x 2   + 2   =   m  là hàm số chẵn nên đồ thị nhận trục Oy làm trục đối xứng.

 

+ Khi x≥ 0 ; g(x) = x3- 3x2+ 2

Do đó; đồ thị hàm số g(x) = x 3   -   3 x 2   +   2  có dạng như hình vẽ.

+ Dựa vào đồ thị suy ra phương trình x 3   -   3 x 2   + 2   =   m  có nhiều nghiệm thực nhất khi và chỉ khi -2< m<  2.

Chọn C.

5 tháng 11 2017

14 tháng 11 2018

Chọn A

14 tháng 11 2019

+ Xét hàm số f( x) = x3- x2+ ( m2+ 1) x- 4m- 7  trên đoạn [ 0; 2]

Ta có f’ (x) = 3x2- 2x+ m2+ 1= 3( x-1/3) 2+ m2+ 2/3> 0 .

+ Suy ra hàm số f(x)  đồng biến trên

  0 ; 2 ⇒ m i n [ 0 ; 2 ]   f ( x ) = f ( 0 ) = - 4 m - 7 m a x [ 0 ; 2 ]   f ( x ) = f ( 2 ) = 2 m 2 - 4 m - 1

+ Khi đó

m a x [ 0 ; 2 ]   y = m a x [ 0 ; 2 ]   f ( x ) = m a x - 4 m - 7 ; 2 m 2 - 4 m - 1 ≤ 15 ⇔ - 4 m - 7 ≤ 15 2 m 2 - 4 m - 1 ≤ 15 ⇔ - 11 2 ≤ m ≤ 2 2 m 2 - 4 m - 16 ≤ 0 ⇔ - 11 2 ≤ m ≤ 2 - 2 ≤ m ≤ 4 ⇔ - 2 ≤ m ≤ 2 → m ∈ ℤ m ∈ ± 2 ; ± 1 ; 0

Vậy có 5 giá trị thoả mãn.

Chọn C.

AH
Akai Haruma
Giáo viên
17 tháng 8 2017

Lời giải:

Xét thấy bậc của hàm số trên tử nhỏ hơn bậc của hàm số dưới mẫu, do đó đồ thị hàm số luôn có 1 TCN \(y=0\)

Khi đó, để ĐTHS có 3 đường tiệm cận thì nó phải có thêm 2 TCĐ

Thấy \(x^3+mx^2=x^2(x+m)\). Để có 2 TCĐ thì trước tiên phương trình trên phải có 2 nghiệm phân biệt, do đó \(m\neq 0\)

Khi đó, PT có hai nghiệm \(x=0,x=-m\). Để tồn tại hai nghiệm này thì :\(\left\{\begin{matrix} 0^2-3m+2\neq 0\\ (-m)^2-3m+2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq \frac{2}{3}\\ (m-1)(m-2)\neq 0\Leftrightarrow m\neq 1,2\end{matrix}\right.\)

Từ những điều trên suy ra \(m\in \left\{3;4;5\right\}\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2017

Câu 1:

\(\left\{\begin{matrix} y_1=bx^3+ax^2+5x\\ y_2=ax^3+bx^2+5x\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y_1'=3bx^2+2ax+5\\ y_2'=3ax^2+2bx+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y_1'=3b\left [ \left ( x+\frac{a}{3b} \right )^2+\frac{5}{3b}-\frac{a^2}{9b^2} \right ]\\ y_2'=3a\left [ \left ( x+\frac{b}{3a} \right )^2+\frac{5}{3a}-\frac{b^2}{9a^2} \right ]\end{matrix}\right.\)

Để các hàm \(y_1,y_2\) không là hàm đồng biến thì \(y_1',y_2'\) không luôn lớn hơn $0$ với mọi \(x\in (-\infty,+\infty)\), tức là xảy ra cả trường hợp lớn hơn $0$ lẫn nhỏ hơn $0$ với mọi $x$. điều này xảy ra khi mà :

\(\left\{\begin{matrix} \frac{5}{3b}-\frac{a^2}{9b^2}<0\\ \frac{5}{3a}-\frac{b^2}{9a^2}<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 15b-a^2<0\\ 15a-b^2<0\end{matrix}\right.\)

\(\rightarrow a^4>225b^2>3375a\)

\(\Rightarrow a>15\) hay \(a\geq 16\). Tương tự, \(b\geq 16\)

Vì đề bài cần tìm min \(2a+b\) nên cần ưu tiên tính nhỏ hơn của $a$

Từ trên ta chọn \(a_{\min}=16\Rightarrow 15b<16^2=256\Rightarrow b\leq 17\)

Do đó \(16\leq b\leq 17\rightarrow b_{\min}=16\)

Do đó \(S_{\min}=(2a+b)_{\min}=48\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2017

Bài 2:

Để hàm số \(y=(x+m)^3(x+m^3)\) là hàm đồng biến thì \(y'>0\forall x\in (-\infty,+\infty)\)

Khai triển:

\(y'=4x^3+x^2(3m^3+9m)+x(6m^4+6m^2)+m^3+3m^5\)

\(\Leftrightarrow y'=(x+m)^2(4x+3m^3+m)\)

Để \(y'>0\Rightarrow 4x+3m^3+m>0\)

\(\Leftrightarrow 3m^3+m>-4x\)

Vì hàm đồng biến với mọi \(x\in (-\infty, +\infty)\) nên điều trên xảy ra khi \(3m^3+m>(-4x)_{\max}\)

Hiển nhiên \(-4x\) với \(x\in R\) thì không tồn tại max.

Do đó đề bài có vấn đề.

18 tháng 9 2019

Chọn D