Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2-25x^4=0
=>x^2-25x^2.x^2=0
=>x^2.(1-25x^2)=0
=>x=0 hoặc x^2=1/25
=>x thuộc {-0,2;0;0,2}
2) 2 giá trị
3)x^2+7x+12=0
=>x^2+3x+4x+3.4=0
=>x(x+3)+4(x+3)=0
=>(x+4)(x+3)=0
=>x=-3;x=-4
nhớ ****
1)x thuộc {-0,2;0;0,2}
2)2 giá trị
3)x^2+3x+4x+4.3=0
=>x(x+3)+4(x+3)=0
=>(x+3)(x+4)=0
=>x=-4;x=-3
1)x2-25x4=0
x2(1-25x2)=0
=>x^2=0 hoặc 1-25x^2=0
x=0 25x^2=-1-0=1
x^2=1/25=(1/5)^2=(1/-5)^2
Vậy S={-1/5;0;1/5}
2)Có 3 giá trị là 0;1;2
3)có 2 giá trị là -3;-4
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
Để \(x=\frac{a-20}{-3}\) ( a ∈ N* ) nhận giá trị dương
=> a - 20 nhận giá trị âm
=> a nhỏ hơn 20
a) S = { a ∈ N* | a < 20 }
\(S=\left\{...;17;18;19\right\}\)
b) ( Không hiểu đề , thông cảm , bạn làm nốt nhé ! )
Ta có: \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=\dfrac{x-2}{x-2}+\dfrac{3}{x-2}=1+\dfrac{3}{x-2}\)
Để A là số nguyên thì \(x-2\inƯ\left(3\right)=\left\{-1,-3,1,3\right\}\)
Ta có bảng giá trị:
x - 2 | -1 | -3 | 1 | 3 |
x | 1 (tm) | -1 (tm) | 3 (tm) | 5 (tm) |
Vậy ...
Ta có : \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}\)
\(\Rightarrow A=1+\dfrac{3}{x-2}\)
Vì x là số nguyên nên để A cũng là số nguyên thì : \(\dfrac{3}{x-2}\in Z\)
\(\Rightarrow3⋮\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)\)
Do đó ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy..........
Ta có: \(x+\sqrt{x^2+1}-\dfrac{1}{x+\sqrt{x^2+1}}=x^2+\sqrt{x^2+1}-\dfrac{x-\sqrt{x^2+1}}{\left(x+\sqrt{x^2+1}\right)\left(x-\sqrt{x^2+1}\right)}\)
Đáp án đúng là B