Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bình phương cạnh huyền của đáy là: \(6^2+8^2=100\)
\(\Rightarrow\) Cạnh huyền của đáy là \(10\left(cm\right)\)
Diện tích xung quanh lăng trụ là: \(\left(6+8+10\right).3=72\left(cm^2\right)\)
Diện tích đáy lăng trụ là: \(\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
Thể tích lăng trụ là: \(24.3=72\left(cm^3\right)\)
Bình phương cạnh huyền của đáy là: \(6^2+8^2=100\)
\(\Rightarrow\)Cạnh huyền của đáy là \(10\left(cm\right)\)
Diện tích xung quanh của lăng trụ là: \(\left(6+8+10\right)\times3=72\left(cm^2\right)\)
Diện tích đáy là: \(\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
Thể tích lăng trụ là: \(24.3=72\left(cm^3\right)\)
a) Trong ΔΔABC vuông tại A theo định lí Pitago ta có ;
CB=√32+42=5(cm)CB=32+42=5(cm)
Diện tích xung quanh của lăng trụ :
(3 + 4 + 5).6 = 72(cm2)
b) Diện tích mặt đáy là :
12⋅3⋅4=6(cm2)12⋅3⋅4=6(cm2)
Thể tích của lăng trụ là:
6 x 6 = 36(cm2)
Áp dụng định lí Py - Ta - Go , độ dài cạnh còn lại của mặt đáy tam giác là :
\(\sqrt{3^2+4^2}=5\left(cm\right)\)
Diện tích xung quanh hình lăng trụ đứng :
\(S_{xq}=\left(3+4+5\right).8=96\left(cm^2\right)\)
Diện tích toàn phần :
\(S_{tp}=96+\left(3.4\right)=108\left(cm^2\right)\)
Thể tích :
\(V=\dfrac{3.4}{2}.8=48\left(cm^3\right)\)
Đặt độ dài 2 cạnh góc vuông của tam giác đó là a và b; độ dài cạnh huyền là c (a,b,c > 0)
Diện tích của tam giác đó là \(\frac{ab}{2}=14\)(cm2) \(\Rightarrow ab=28\Leftrightarrow2ab=56\)(1)
Áp dụng ĐL Pytago ta có: \(a^2+b^2=c^2=13^2=169\)(2)
(1) + (2) \(\Rightarrow a^2+2ab+b^2=56+169=225\Leftrightarrow\left(a+b\right)^2=225\)
\(\Leftrightarrow a+b=\sqrt{225}=15\)(cm). Vậy ...
\(S=\dfrac{6\cdot3}{2}=9\left(cm^2\right)\)