Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BE // DC => ∆BEF ∽ ∆CDF
AD // BF => ∆ADE ∽ ∆BFE.
Do đó: ∆ADE ∽ ∆CFD
b) BE = AB - AE = 12 - 8 = 4cm
∆ADE ∽ ∆BFE => \(\dfrac{AE}{BE}=\dfrac{AD}{BF}=\dfrac{DE}{FD}\)
=> \(\dfrac{8}{4}=\dfrac{7}{BF}=\dfrac{10}{EF}\)
=> BF = 3,5 cm.
EF = 5 cm.
A) Xét \(\Delta HBA\) và \(\Delta ABC\) có :
\(\widehat{B}\) chung ; \(\widehat{BAC}=\widehat{BHA}=90\) độ
\(\Leftrightarrow\Delta HBA\infty\Delta ABC\left(g.g\right)\)
B) Xét \(\Delta ABE\) và \(\Delta ACB\) có :
\(\widehat{A}\) chung
\(\widehat{ABE}=\widehat{BCA}\)( Do BE là phân giác của góc B , mà \(\widehat{B}=2\widehat{C}\))
\(\Leftrightarrow\Delta ABE\infty\Delta ACB\left(g.g\right)\)
Ta có tỉ lệ : \(\frac{AB}{AC}=\frac{AE}{AB}\)\(\Leftrightarrow AB^2=AE\cdot AC\left(dpcm\right)\)
C) ta có tỉ lệ : \(\frac{HB}{AB}=\frac{AB}{BC}\)\(\Leftrightarrow HB=\frac{AB^2}{BC}=\frac{9}{6}=1,5\left(cm\right)\)
Xét \(\Delta BHD\) và \(\Delta BAE\) có :
\(\widehat{BHD}=\widehat{BAE}=90\)độ
\(\widehat{ABE}=\widehat{EDH}\)( do BE là phân giác của góc B )
\(\Leftrightarrow\Delta BHD\infty\Delta BAE\left(g.g\right)\)
Ta có tỉ lệ : \(\frac{BH}{AB}=\frac{HD}{AE}=\frac{BD}{BE}\)
\(\Rightarrow\frac{S_{BHD}}{S_{BAE}}=\left(\frac{BH}{AB}\right)^2=\left(\frac{1,5}{3}\right)^2=\frac{1}{4}\)
BÀI NÀY MK TỪNG LÀM RÙI NÊN YÊN TÂM !!! NẾU THẤY ĐÚNG THÌ TK NKA !!!
Hàng thứ 5 từ dười đếm lên bạn sửa lại giúp mk là \(\widehat{ABE}=\widehat{EBH}\)mới đúng !!! thông cảm mk bị cận
Giả sử ΔA’B’C’ ΔABC theo tỉ số k
Gọi D, D’ lần lượt là trung điểm BC và B’C’
⇒ ΔA’B’D’ ΔABD theo tỉ số k.
a) suýt làm được
b)mém làm xong
c)đang suy nghĩ
suy ra không làm được!thông cảm nhé!