Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB⊥AC
HK⊥AC
Do đó: AB//HK
b: Xét ΔAKI có
AH là đường cao
AH là đườg trung tuyến
Do đó: ΔAKI cân tại A
c: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{IAH}=90^0\)
mà \(\widehat{HAK}=\widehat{IAH}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
a) sử dụng tc: Từ vuông góc đến //
b)tam giác KHA= tam giác IHA(c.g.c)
=> AK=AI
=> góc AKI=góc AIK
vì AK=AI=> tam giác AKI cân
c) vì AB//HK=> góc BAK=góc AKI(so le trong)
góc BAK=góc AKI
mà góc AKI=góc AIK(cmt)
d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI
tam giác AKC = tam giác AIC
Bạn tự vẽ hình nha
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
HAE = HAB + BAE
KAD = KAC + CAD
mà HAB = KAC (tam giác AHB = tam giác AKC)
=> HAE = KAD
Xét tam giác AHE và tam giác AKD có:
AD = AE (chứng minh trên)
HAE = KAD (chứng minh trên)
AH = AK (tam giác AHB = tam giác AKC)
=> Tam giác AHE = Tam giác AKD (c.g.c)
Chúc bạn học tốt
a) Xét ΔΔvuông HBD và ΔΔvuông KCE, có:
BD=CE (gt)
B1ˆB1^=B2ˆB2^ (đối đỉnh)
C1ˆC1^=C2ˆC2^(đối đỉnh)
Mà B1ˆB1^=C1ˆC1^(gt)
nên B2ˆB2^=C2ˆC2^
Do đó:ΔΔ HBD = ΔΔKCE (c.h-g.n)
=>HB=CK (2 cạnh tương ứng)
b)Xét ΔΔAHB và ΔΔAKC có:
HB=CK (c/m trên)
AB=AC (gt)
ABHˆABH^=ACKˆACK^ (vì ABHˆABH^=1800-B1ˆB1^ ; ACKˆACK^=180o-C1ˆC1^ mà B1ˆB1^=C1ˆC1^)
c)
Do đó: ΔΔAHB = ΔΔAKC (c-g-c)
=>AHBˆAHB^=AKCˆAKC^ (2 góc tương ứng)
a/ Ta có
\(AB\perp AC\left(gt\right)\)
\(HK\perp AC\left(gt\right)\)
=> AB//HK (cùng vuông góc với AC)
b/ Xét tg AKI có
\(AH\perp HI\) => AH là đường cao của tg AKI
HK=HI (gt) => AH là trung tuyến của tg AKI
=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
c/ Ta có
tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)
AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )
d/ Xét tg CKI có
\(CH\perp KI\) => CH là đường cao của tg CKI
HK=HI => CH là trung tuyến của tg CKI
=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
Xét tg AIC và tg AKC có
tg AKI cân tại A (cmt) => AI=AK
tg CKI cân tại C (cmt) => CI=CK
AC chung
=> tg AIC = tg AKC (c.c.c)
a, Vì \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{HBD}=\widehat{KCE}\) ( vì là các góc đối đỉnh )
Xét hai tam giác vuông là \(\Delta HBD\) và \(\Delta KCE\) ta có:
\(BD=CE\left(gt\right),\widehat{HBD}=\widehat{KCE}\left(cmt\right)\Rightarrow\Delta HBD=\Delta KCE\) ( cạnh huyền - góc nhọn )
=> HB = CK ( 2 cạnh tương ứng ) ( ĐPCM )
b, Vì \(\Delta ABC\) cân tại A => AB = AC
Vì \(\widehat{ABC}=\widehat{ACB}\Rightarrow180^o-\widehat{ABC}=180^o-\widehat{ACB}\Rightarrow\widehat{ABH}=\widehat{ACK}\)
Xét \(\Delta AHB\) và \(\Delta AKC\) ta có:
\(AB=AC\left(cmt\right),\widehat{ABH}=\widehat{ACK}\left(cmt\right),HB=CK\left(cmt\right)\)\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)( ĐPCM )
c, Vì \(AB=AC,BD=CE\Rightarrow AB+BD=AC+CE\Rightarrow AD=CE\)
\(\Rightarrow\Delta ADE\) cân tại A \(\Rightarrow\widehat{ADE}=\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
Vì \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{ABC}=\widehat{ADE}\)
Mà \(\widehat{ABC}\) và \(\widehat{ADE}\) nằm ở bị trí đồng vị => HK song song với DE ( ĐPCM )
d, Vì \(\Delta HBD=\Delta KCE\Rightarrow DH=EK\) ( 2 cạnh tương ứng )
\(\widehat{BDH}=\widehat{CEK}\) ( 2 góc tương ứng ) \(\widehat{ADH}=\widehat{AEK}\)
Xét \(\Delta AHD\) và \(\Delta AKE\) ta có:
\(AD=AE\left(cmt\right),\widehat{AEK}=\widehat{ADH}\left(cmt\right),BD=CE\left(gt\right)\)
\(\Rightarrow\Delta AHD=\Delta AKE\left(c.g.c\right)\) ( ĐPCM )
a) Ta có : AB vuông góc với AC
HK vuông góc với AC
AB // HK
b) ΔHAK=ΔHAI(c.g.c)(HA chung; HK = HI; AHKˆ=AHIˆ=900)
AK = AI Tam giác AKI cân tại A
c) Theo b : AIKˆ=AKIˆ
Mà BAKˆ=AKIˆ (cặp góc so le trong, AB // HK)
Từ 2 điều trên suy ra : BAKˆ=AIKˆ(=AKIˆ)
d) Tam giác IAK cân tại A có AH là đường cao ứng với đáy KI nên AH là đường phân giác xuất phát từ đỉnh A của tam giác AKI.
KACˆ=IACˆ
ΔAIC=ΔAKC(c.g.c) (AC chung; AK = AI (theo b); KACˆ=IACˆ(cmt))
1 đúng nhé
a) ta có :AB vuông góc AC
HK vuông góc AC
b) Xét tam giác AKH và tam giác AHI
AH là cạnh chung
H1 = H2
IH=HK (gt)
suy ra 2 tam giác trên bằng nhau
suy ra KA=AI
K^=I^
Vì KA=AI mà K = I nên tam giác KAI LÀ tam giác cân . Cân tại A