Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc hBE
=>ΔABE=ΔHBE
c: Xét ΔBHM vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBM chung
=>ΔBHM=ΔBAC
=>BM=BC
=>ΔBMC cân tại B
mà BN là đường phân giác
nên N là trung điểm của CM
=>NM=NC
a: góc B=90-60=30 độ
Xét ΔABC có góc C<góc B<góc A
nên AB<AC<BC
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
c: ΔBAE=ΔBHE
=>EA=EH
=>ΔEAH cân tại E
A B C D 6 8 E H
a)BC2 =AB2+AC2 ( định lí Pitago)
=> BC=10
Dựa vào t/c đường phân giác ta có
AB/AD=BC/DC=AB+BC/ AD+DC= 16/8=2
=> AD= 3; DC=5
=>AD/DC= 3/5
b)có GÓC A =GOC E= 90 ĐỘ
VÀ GÓC ABD =GÓC EBC (VÌ BD LA BD GÓC ABC)
=>TG ABD đồng dạng tam giác EBC(gg)
c) d) cũng khá dễ nên bạn tự làm nha (gợi ý kết hợp b,c để gải d)
a ) Áp dụng Pytago vào tam giác vuông ABC ta được :
AB2+AC2 = BC2
=> 242 +322 = BC2
=> BC2 =1600
=> BC=40 (cm)
b, ta có: ΔABC vuông có ABCˆ=60o
ACBˆ=30o;DBCˆ=30o(BD là phân giác)
Xét ΔDBC có ACBˆ=DBCˆ=30o
ΔDBC cân tại D
c, XétΔKBC có CA _|_KB; KM_|_BC
Mà CA cắt KM tại D D là trực tâm của ΔKBC
BD_|_KC
d, ta có: M là trung điểm của BC (ΔDBC cân)
E là trung điểm của AC
MC=12BC=20;EC=12AC=16
EM=\(\sqrt[]{MC^2-EC^2}\)=12
( L-IKE)
A B C E H
Cách 1: Trong tg vuông cạnh đối diện góc \(30^o\) thì bằng nửa cạnh huyền
\(\Rightarrow AB=\dfrac{BC}{2}\Rightarrow BC=2AB\)
Cách 2:
Xét tg vuông ABC có
\(\widehat{B}=90^o-\widehat{C}=60^o\)
Xét tg vuông CEH và tg vuông BEH có
\(\widehat{C}=30^o\)
\(\widehat{EBH}=\dfrac{\widehat{B}}{2}=\dfrac{60^o}{2}=30^o\)
\(\Rightarrow\widehat{C}=\widehat{EBH}\)
EH chung
=> tg CEH = tg BEH (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)
\(\Rightarrow CH=BH\)
Xét tg vuông BEH và tg vuông BAE có
\(\widehat{EBH}=\widehat{EBA}\) (gt)
BE chung
=> tg BEH = tg EBA (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
\(\Rightarrow AB=BH\)
Mà \(BH=CH=\dfrac{BC}{2}\)
\(\Rightarrow AB=\dfrac{BC}{2}\Rightarrow BC=2AB\)