Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go vào tam giác ABC ta có:
\(AB^2+AC^2=BC^2\)
\(18^2+24^2=BC^2\)
\(324+576=BC^2\)
\(BC^2=900=30^2\)
\(\Rightarrow BC=30\left(cm\right)\)
chu vi tam giác ABC là 30+18+24=72(cm)
vậy ...
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=30cm\)
Chu vi tam giác ABC là
AB + AC + BC = 72 cm
a. Áp dụng định lý pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
\(C_{ABC}=6+8+10=24cm\)
b. xét tam giác vuông ABD và tam giác vuông BDM, có:
B : góc chung
AD: cạnh chung
Vậy tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )
a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC=9+12+15=36\left(cm\right)\)
Lời giải:
$AD$ là đường trung tuyến ứng với cạnh huyền $BC$
$\Rightarrow AD=\frac{BC}{2}$
Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{18^2+24^2}=30$ (cm)
$\Rightarrow AD=30:2=15$ (cm)
C
C