K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường trung trực

hay AH là trục đối xứng của ΔABC

b: Xét ΔABC có 

E là trung điểm của AB

M là trung điểm của AC

Do đó: EM là đường trung bình

=>EM//BC và EM=BC/2

hay EM//BH; EM=BH

Xét tứ giác BEMC có ME//BC

nên BEMC là hình thang

mà \(\widehat{EBC}=\widehat{MCB}\)

nên BEMC là hình thang cân

Xét tứ giác BEMH có ME//BH và ME=BH

nên BEMH là hình thang cân

Xét ΔABC có

H là trung điểm của BC

M là trung điểm của AC

Do đó: HM là đường trung bình

=>HM//AB và HM=AB/2

hay HM//AE và HM=AE
=>AEHM là hình bình hành

mà AE=AM

nên AEHM là hình thoi

11 tháng 3 2018
Câu khẳng định Đúng Sai
a. Tam giác có một trục đối xứng là tam giác cân X  
b. Tứ giác có một trục đối xứng là hình thang cân   X

a: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến ứng với cạnh huyền BC

nên \(AD=BD=CD=\dfrac{BC}{2}\)

Xét tứ giác ADBK có 

E là trung điểm của đường chéo AB

E là trung điểm của đường chéo DK

Do đó: ADBK là hình bình hành

mà DA=DB

nên ADBK là hình thoi

Suy ra: K đối xứng với D qua AB

b: Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của BC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//AC và \(DE=\dfrac{AC}{2}\)

mà \(DE=\dfrac{DK}{2}\)

nên DK//AC và DK=AC

hay AKDC là hình bình hành

a) Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(gt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MF//AB và \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà E\(\in\)AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)

nên MF//AE và MF=AE

Xét tứ giác AEMF có 

MF//AE(cmt)

MF=AE(cmt)

Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Hình bình hành AEMF trở thành hình chữ nhật khi \(\widehat{BAC}=90^0\)

c) Xét tứ giác AMCK có 

F là trung điểm của đường chéo AC

F là trung điểm của đường chéo MK

Do đó: AMCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

12 tháng 12 2021

b: Xét tứ giác ADBK có 

E là trung điểm của AB

E là trung điểm của DK

Do đó: ADBK là hình bình hành

mà DA=DB

nên ADBK là hình thoi

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!