Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\cos60^0=\dfrac{28^2+35^2-BC^2}{2\cdot28\cdot35}\)
\(\Leftrightarrow2009-BC^2=980\)
hay \(BC=7\sqrt{21}\left(cm\right)\)
Câu 1:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+6\right)=16\)
=>BH=2(cm)
BC=BH+CH=8cm
\(AC=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)
sin B=AC/BC=căn 3/2
nên góc B=60 độ
=>góc C=30 độ
b, Có \(\widehat{C}=180^0-\widehat{A}-\widehat{C}=180^0-62^0-51^0=67^0\)
Kẻ AH \(\perp\)BC
Có \(\widehat{BAH}=90^0-\widehat{B}=90^0-51^0=39^0\)
Áp dụng ht trong tam giác vuông có:
\(BH=AB.sin\widehat{BAH}=10.sin39^0\approx6,29\left(cm\right)\)
\(AH=AB.sinB=10.sin51^0\)
\(sinC=\frac{AH}{AC}\)=> \(AC=\frac{AH}{sinC}=\frac{10.sin51^0}{sin67^0}\approx8,44\left(cm\right)\)
a, Có \(\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-30^0-42^0=108^0\)
Kẻ CH\(\perp\)AB
Xét tam giác vuông AHC có góc A bằng 300
=> \(CH=\frac{AC}{2}=\frac{4}{2}=2\)( vì trong tam giác vuông ,cạnh đối diện với góc 300 bằng một nửa cạnh huyền)
Áp dụng ht trong tam giác vuông có:
\(AH=AC.cos30^0=4.\frac{\sqrt{3}}{2}=2\sqrt{3}\) (cm)
\(HB=HC.cotB=2.cot42^0\approx2,22\)(cm)
=> AB=AH+HB=\(2\sqrt{3}+2,22\) (cm)
Áp dụng ht trong tam giác vuông có:
\(HC=BC.sinB\)
=> \(BC=\frac{HC}{sinB}=\frac{2}{sin51^0}\approx2,574\) (cm)