K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

chu vi = 1 => a+b+c=1

viết lại đẳng thức:  a/(a+b+c-a)+ b/(a+b+c-b) + c/(a+b+c-c) = 3/2

<=>a/b+c + b/c+a + c/a+b = 3/2

cộng 3 vào 2 vế rút ra được (a+b+c)(1/a+b + 1/b+c + 1/c+a ) = 9/2

<=>1/(a+b)+1/(b+c)+1/(c+a)=9/2(do a+b+c=1)

Sử dụng bđt Schwarz : 1/(a+b)+1/(b+c)+1/(c+a) >/ (1+1+1)2/2(a+b+c) = 9/2

đẳng thức xảy ra <=> a+b=b+c=c+a <=> a=b=c ta có đpcm

30 tháng 3 2017

nhìn kỹ lại đề bạn ơi

5 tháng 10 2020

Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)với x,y,z dương và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi x=y=z

Với x=y=z thì a=b=c => tam giác ABC đều

26 tháng 10 2020

Cách khác :

Chu vi tam giác bằng 1 suy ra \(a+b+c=1\Rightarrow\hept{\begin{cases}1-a=b+c\\1-b=c+a\\1-c=a+b\end{cases}}\)

Nên đẳng thức viết lại thành: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)\(=\frac{3}{2}\)

Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy, áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel: 

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy tam giác ABC đều.

30 tháng 8 2016

Bằng nhau

30 tháng 8 2016

a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .

28 tháng 10 2021

Chọn B

7 tháng 7 2017

thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được

(a+b+c).(a^2+b^2+c^2 -ab-bc-ca)=0

nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0

mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0

vậy a^2+b^2+c^2 -ab-bc-bc-ca=0

đặt đa thức đó bằng A

A=0 nên 2xA=0

phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0

nên a=b=c vậy là tam giác đều 

AH
Akai Haruma
Giáo viên
21 tháng 10

Lời giải:

$a^3+b^3+c^3=3abc$

$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$

$\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0$

$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$

$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$

Hiển nhiên $a+b+c>0$ với mọi $a,b,c$ là độ dài 3 cạnh tam giác.

$\Rightarrow a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Do mỗi số $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c>0$.

$\Rightarrow$ để tổng của chúng bằng $0$ thì:

$(a-b)^2=(b-c)^2=(c-a)^2=0$

$\Rightarrow a=b=c$

$\Rightarrow ABC$ là tam giác đều.

20 tháng 3 2016

ABC là tam giác cân

20 tháng 3 2016

ABC là tam giác cân

24 tháng 3 2020

A C B M N

đề sai phải là NA/NB = 3/4

BM là pg của ^ABC (gt)

=> MA/MC = AB/BC (tc)             

mà MA/MC = 1/2 (gt)

=> AB/BC = 1/2           (1)

CN là pg của ^ACB (gt)

=> NA/NB = AC/BC (tc)

mà NA/NB = 3/4

=> AC/BC = 3/4          (2)

(1)(2) => AB/BC : AC/BC = 2/3

=> AB/2 = AC/3

có AB/BC = 1/2 (cmt) => AB = BC/2 => AB/2 = BC/4

=> AB/2 = AC/3 = BC/4

=> AB+AC+BC/2+3+4 = AB/2 = AC/3 = BC/4

AB+AC+BC = 18

=> 18/9 = AB/2 = AC/3 = BC/4

=> AB = 4; AC = 6; BC = 8