Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △ ABC có AD là tia phân giác \(\widehat{A}\)
⇒ \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\Leftrightarrow\dfrac{DB}{DC}=\dfrac{14}{10}=\dfrac{7}{5}\) \(\left(1\right)\)
Từ \(\left(1\right)\) ⇒ \(5DB=7DC\Leftrightarrow DB=\dfrac{7}{5}DC\)
Mà \(DB+DC=BC\)
\(\dfrac{7}{5}DC+DC=12\)
\(DC\left(\dfrac{7}{5}+1\right)=12\Leftrightarrow DC.\dfrac{12}{5}=12\Leftrightarrow DC=5\left(cm\right)\)
Ta có: \(DB+DC=BC\)
\(5+DC=12\Leftrightarrow DC=7\left(cm\right)\)
b) Từ A kẻ thêm đường cao AH
Khi đó ta có: \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{\dfrac{1}{2}AH.BD}{\dfrac{1}{2}AH.CD}=\dfrac{BD}{CD}=\dfrac{7}{5}\)
Vậy tỉ số diện tích \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{7}{5}\)
Vì AD là ph/giac tgiac ABC\(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}\left(1\right)\)
Có \(\frac{S_{ABD}}{S_{ADC}}=\frac{\frac{1}{2}.BD.AH}{\frac{1}{2}.DC.AH}=\frac{BD}{DC}\left(2\right)\)
(1) và (2) suy ra ĐPCM
Hình bạn tự vẽ nhé...
a)
Xét tam giác BAH và tam giác ABC , có :
A^ = H^ = 90O
B^ : góc chung
=> tam giác HAB ~ tam giác ACB ( g.g)
c)
ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 122 + 166 = BC2
=> BC2 = 400
=> BC = 20 cm
Vì tam giác ACB ~ tam giác HAB , nên ta có :
AH/AC= AB/BC
=> AH/16=12/20
=> AH = 9,6 cm.
a, Vì AD là phân giác nên \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{DC}{AC}=\frac{DB}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\frac{DC}{AC}=\frac{DB}{AB}=\frac{BC}{AB+AC}=\frac{10}{15}=\frac{2}{3}\Rightarrow DC=6cm;DB=4cm\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)
=>\(BD=\dfrac{6}{2}=3\left(cm\right)\)
Kẻ đường cao AH
Ta có:AD là phân giác góc BAC nên \(\frac{BD}{DC}=\frac{AB}{AC}\) (1)
Ta có:\(\frac{S_{ABD}}{S_{ACD}}=\frac{\frac{1}{2}AH\cdot BD}{\frac{1}{2}AH\cdot CD}=\frac{BD}{CD}\) (2)
Từ (1) và (2)\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{AB}{AC}=\frac{4}{6}=\frac{2}{3}\)