K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:AD+DB=AB

AE+EC=AC

mà AD=AE: AB=AC
nên DB=EC

b: Xet ΔDBC và ΔECB có

DB=EC
góc DBC=góc ECB

BC chung

=>ΔDBC=ΔECB 

c: Xét ΔOCB  có góc OCB=góc OBC

nên ΔOBC cân tại O

16 tháng 4 2015

Xét tg: EAB và tg DAC có : 

AE = AD ( gt) 

^A chung 

AB = AC ( gt) 

=> tg EAB = tg DAC ( c.g.c)   => BE = CD; ^ABE = ^ACD ( cặp cạnh, góc tương ứng = nhau) 

c) Xét tg BDC và tg CEB có: 

BC chung 

^DBC = ^ECB (gt) 

BD =CE 

=> tg BDC = tg ECB ( c.g.c)   => ^BDC = ^CEB ( cặp góc tuong úng )

xét tg BDK và tg CEK có 

^DBE = ^ ECD (cmt) 

BD = CE 

^BDC = ^CEB (cmt) 

=> tg BDK = tg CEK ( g.c.g)    => BK = CK  => tg BKC cân tại K.

a: Xét ΔABE và ΔACDcó

AB=AC

góc BAE chung

AE=AD

=>ΔABE=ΔACD

=>BE=CD

b: ΔABE=ΔACD

=>góc ABE=góc ACD

c: góc ABE+góc KBC=góc ABC

góc ACD+góc KCB=góc ACB

mà góc ABE=góc ACD và góc ABC=góc ACB

nên góc KBC=góc KCB

=>KB=KC

d: AB=AC

KB=KC

=>AK là trung trực của BC

=>A,K,I thẳng hàng

5 tháng 4 2022

a, Ta có : \(AD=AE\left(gt\right)\)

→ ΔADE là tam giác cân ở A

\(\Rightarrow\widehat{ADE}=\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40}{2}=70^0\)

Mà ΔABC cũng là tam giác cân 

\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}=70^0\)

\(\Rightarrow\widehat{ADE}=\widehat{ABC}\left(=70^0\right)\)

mà  2 góc này ở vị trí so le  trong

\(\Rightarrow DE//BC\)

b, Xét ΔABE và ΔACD có :

\(AB=AC\left(\Delta ABC\cdot cân\right)\)

\(\widehat{A}:chung\)

\(AD=AE\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\)

c, Nối dài đoạn AI xuống BC, ta được đường phân giác AK của tam giác ABC.

Mà ΔABC cân ở A

→ AK là đường trung tuyến của tam giác ABC

→ AI cũng là đường trung tuyến của tam giác ABC

8 tháng 12 2016

TRẢ LỜI HỘ MIK CÁI

23 tháng 7 2017

dễ thế mà

a: Xét ΔBEC và ΔCDB có 

BE=CD

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔBEC=ΔCDB

Suy ra: CE=DB

b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)

nên ΔGBC cân tại G

=>GB=GC

Ta có: GB+GD=BD

GE+GC=CE

mà BD=CE

và GB=GC

nên GD=GE

hay ΔGDE cân tại G

c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta có: GB=GC

nên G nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,G,M thẳng hàng

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: \(\widehat{OCB}=\widehat{OBC}\)

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

1 tháng 3 2022

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

ˆBADBAD^ chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: ˆOCB=ˆOBCOCB^=OBC^

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM