K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2015

Xét tg: EAB và tg DAC có : 

AE = AD ( gt) 

^A chung 

AB = AC ( gt) 

=> tg EAB = tg DAC ( c.g.c)   => BE = CD; ^ABE = ^ACD ( cặp cạnh, góc tương ứng = nhau) 

c) Xét tg BDC và tg CEB có: 

BC chung 

^DBC = ^ECB (gt) 

BD =CE 

=> tg BDC = tg ECB ( c.g.c)   => ^BDC = ^CEB ( cặp góc tuong úng )

xét tg BDK và tg CEK có 

^DBE = ^ ECD (cmt) 

BD = CE 

^BDC = ^CEB (cmt) 

=> tg BDK = tg CEK ( g.c.g)    => BK = CK  => tg BKC cân tại K.

23 tháng 4 2017

Bạn tự vẽ hình nhé!

a)b) Xét tam giác ABE và ADC có:

AB = AC      ( tính chất tam giác ABC cân tại A)

Góc A chung 

AD = AE (gt)

=> tam giác ABE = tam giác ACD ( c-g-c)

=> Góc ABE = góc ACD  ( 2 góc t/ứ)

c) Ta có góc: ABE + KBC = ABC 

                   ACD + KCB = ACB

         mà góc: ACB = ABC (t/c tam giác ABC cân tại A)

                     ABE = ACD (cmt)

           => Góc KBC = KCB

         => tam giác KBC cân tại K

d) Câu d bạn xem lại xem có sai đề ko nhé!

                     

a: Xét ΔABE và ΔACDcó

AB=AC

góc BAE chung

AE=AD

=>ΔABE=ΔACD

=>BE=CD

b: ΔABE=ΔACD

=>góc ABE=góc ACD

c: góc ABE+góc KBC=góc ABC

góc ACD+góc KCB=góc ACB

mà góc ABE=góc ACD và góc ABC=góc ACB

nên góc KBC=góc KCB

=>KB=KC

d: AB=AC

KB=KC

=>AK là trung trực của BC

=>A,K,I thẳng hàng

16 tháng 4 2016

A B C D E K

a)Xét tam giác DAC và tam giác EAB có:

AD=AE(giả thiết)

góc A là góc chung

AB=AC(tính chất tam giác cân)

Do đó, tam giác DAC=tam giác EAB(c.g.c)

=>CD=BE(2 cạnh tương ứng)

b)Vì  tam giác DAC=tam giác EAB(c.g.c) nên góc ABE= góc ACD(2 góc tương ứng)

c)Ta có: góc ABC= góc ACB(tính chất tam giác cân) và  góc ABE= góc ACD (chứng minh trên)

=>góc ABC- góc ABE=góc ACB-góc ACD  hay góc BEC = góc DCB => tam giác KBC cân tại K

Vậy tam giác KBC cân tại K

6 tháng 4 2022

a)Xét tam giác DAC và tam giác EAB ta có:                                  AD=AE(gt) góc A là góc chung AB=AC(gt)                                                suy ra tam giác DAC=tam giác EAB(c.g.c) =>CD=BE(2 cạnh tương ứng)  b)Vì tam giác DAC=tam giác EAB(c.g.c) nên góc ABE= góc ACD(2 góc tương ứng)                                                                                             c)Ta có: góc ABC= góc ACB(tính chất tam giác cân) và góc ABE= góc ACD (chứng minh trên) =>góc ABC- góc ABE=góc ACB-góc ACD hay góc BEC = góc DCB => tam giác KBC cân tại K Vậy tam giác KBC cân tại K    câu trả lời đây nha bạn!!!

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác củaADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,BC, AD. Chứng minh:a) AC là tia phân giác của DAH .b) IH = IKBài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứngminh:a) Chứng minh AB //HKb) Chứng minh KAH...
Đọc tiếp

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
 AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH 
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy

4
24 tháng 4 2020

mik ngu hình lắm xin lỗi nha

24 tháng 4 2020

ngu thì xen zô nói làm j

10 tháng 7 2019

A B C D E O H

Cm: a) Xét t/giác ABE và t/giác ACD

có: AB = AC (gt)

  \(\widehat{A}\) :chung

  AE = AD (gt)

=> t/giác ABE = t/giác ACD (c.g.c)

=> BE = CD (2 cạnh t/ứng)

b)Ta có: AD + DB = AB

  AE + EC = AC

mà AD = AE (gt) ; AB = AC (gt)

=> BD = EC

Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)

          \(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)

mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)

=> \(\widehat{BDC}=\widehat{BEC}\)

Xét t/giác BOD và t/giác COE

có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  \(\widehat{BDO}=\widehat{OEC}\) (cmt)

=> t/giác BOD = t/giác COE (g.c.g)

c) Xét t/giác ABO và t/giác ACO

có: AB = AC (gT)

  OB = OC (vì t/giác BOD = t/giác COE)

 AO  : chung

=> t/giác ABO = t/giác ACO (c.c.c)

=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)

=> AO là tia p/giác của \(\widehat{A}\)

d) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

 \(\widehat{BAH}=\widehat{CAH}\)(cmt)

 AH : chung

=> t/giác ABH = t/giác ACH (c.g.c)

=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)

Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)

=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)

1 tháng 7 2016

a) Xét tam giác ABE và tam giác ADC: 

AE=AC(theo gt tam giác ABC cân ) 

góc A chung 

AE=AD(theo gt) 

=> Tam giác ABE=tam giác ADC(c.g.c) 

nên BE=CD(dpcm) 

b) Vì tam giác ABE=tam giác ACD nên góc ABE=góc ACD( 2 góc tương ứng) 

c) Xét Tam giác DKB và tam giác EKC 

góc DKB=góc EKC(đối đỉnh)

AB=AC(tam giác ABC cân) mà AD=AE (gt) =>DB=EC

góc DBK= góc ECK 

=>tam giác DKB=tam giác EKC(g.c.g) 

=>KB=KC(2 cạnh tương ứng) 

=>tam giác KBC là tam giác cân .

2 tháng 7 2016

A B C D E K

a) Xét \(\Delta\) BAE và \(\Delta\) CAD có:

AB = AC ( \(\Delta\) ABC cân tại A )

BAE = CAD ( chung góc A )

AD = AE ( giả thiết )

.=> \(\Delta\) BAE = \(\Delta\) CAD ( c . g . c ) (1)

=> BE = CD ( 2 cạnh tương ứng )

Vậy BE = CD ( đpcm)

b) Ta có:  \(\Delta\) BAE = \(\Delta\) CAD ( chứng minh (1) )

=> ABE = ACD (  2 góc tương ứng )

Vậy ABE = ACE ( đpcm )

c) Ta có: \(\Delta\) ABC cân tại A ( giả thiết )

=> ABC = ACB ( tính chất tam giác cân )

hay DBC = ECB (2)

Xét \(\Delta\) DBC và \(\Delta\) ECB có:

CD = BE ( chứng minh a)

DBC = ECB ( chứng minh (2) )

BC là cạnh chung

=> \(\Delta\) DBC = \(\Delta\) ECB ( c . g . c )

=> DCB = EBC ( 2 góc tương ứng )

hay KCB = KBC 

Xét \(\Delta\) KBC có: KCB = KBC

=> \(\Delta\) KBC cân tại K

Vậy \(\Delta\) KBC cân tại K 

Chuk bn hk tốt ! vui