Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(N=2^0+2^1+...+2^{2008}+2^{2009}\)
Suy ra: \(M=2^{2010}-N\)
Ta có: \(N=2^0+2^1+...+2^{2008}+2^{2009}\)
\(\Leftrightarrow2N=2+2^2+...+2^{2009}+2^{2010}\)
\(\Leftrightarrow N=2^{2010}-1\)
\(M=2^{2010}-N=2^{2010}-2^{2010}+1=1\)
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
Gọi \(N=2^{2009}+2^{2008}+...+2^1+2^0\)
\(2N=2^{2010}+2^{2009}+...+2^2+2^1\\ 2N-N=\left(2^{2010}+2^{2009}+...+2^2+2^1\right)-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\\ N=2^{2010}-2^0\\ N=2^{2010}-1\)
Thay vào ta được
\(M=2^{2010}-\left(2^{2010}-1\right)\\ M=2^{2010}-2^{2010}+1\\ M=1\)
Vậy \(M=1\)
Ta có :
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^0\right)\)
Đặt A=22009+22008+..+20
\(A=2^{2009}+2^{2008}+...+2^0\\ 2A=2^{2010}+2^{2009}+...+2^1\\ \Rightarrow2A-A=A=2^{2010}-2^0\\ \Rightarrow M=2^{2010}-\left(2^{2010}-2^0\right)\\ M=2^{2010}-2^{2010}+1\\ \Rightarrow M=1\)
Chúc bạn học tốt!
Đặt \(A=2^{2009}+2^{2008}+2^{2007}+...+2+1\\ \Rightarrow2A=2^{2010}+2^{2009}+2^{2008}+...+2^2+2\\ \Rightarrow2A-A=\left(2^{2010}+2^{2009}+2^{2008}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+2^{2007}+...+2+1\right)\\ \Rightarrow A=2^{2010}-1\)
\(\Rightarrow M=2^{2010}-2^{2010}+1=1\)
Đặt A = 22009 + 22008 + ... + 21 + 20
2A = 22010 + 22009 + ... + 22 + 21
2A - A = (22010 + 22009 + ... + 22 + 21) - (22009 + 22008 + ... + 21 + 20)
A = 22010 - 20
A = 22010 - 1
=> 22010 - (22009 + 22008 + ... + 21 + 20)
= 22010 - (22010 - 1)
= 22010 - 22010 + 1
= 1
Đặt A = 22009 + 22008 + ... + 21 + 20
2A = 22010 + 22009 + ... + 22 + 21
2A - A = (22010 + 22009 + ... + 22 + 21) - (22009 + 22008 + ... + 21 + 20)
A = 22010 - 20
A = 22010 - 1
=> 22010 - (22009 + 22008 + ... + 21 + 20)
= 22010 - (22010 - 1)
= 22010 - 22010 + 1
= 1
\(M=2^{2010}-\left(2^{2009}+2^{2008}+....+2^1+2^0\right)\)
Đặt:
\(S=2^{2009}+2^{2008}+....+2^1+2^0\)
\(S=2^0+2^1+.....+2^{2008}+2^{2009}\)
\(2S=2\left(2^0+2^1+.....+2^{2008}+2^{2009}\right)\)
\(2S=2^1+2^2+.....+2^{2009}+2^{2010}\)
\(2S-S=\left(2^1+2^2+.....+2^{2009}+2^{2010}\right)-\left(2^0+2^1+.....+2^{2008}+2^{2009}\right)\)
\(S=2^{2010}-2^0=2^{2010}-1\)
Thay S vào M ta có:
\(M=2^{2010}-\left(2^{2010}-1\right)\)
\(M=2^{2010}-2^{2010}+1=1\)
M=22010-(22009+22008+22007+...+21+20)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
Vậy M=1
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(2^{2010}-M=1+2+2^2+...+2^{2008}+2^{2009}\)
\(2\left(2^{2010}-M\right)=2+2^2+2^3+...+2^{2009}+2^{2010}\)
\(2\left(2^{2010}-M\right)-\left(2^{2010}-M\right)=\left(2+2^2+2^3+...+2^{2009}+2^{2010}\right)-\left(1+2+2^2+...+2^{2008}+2^{2009}\right)\)
\(2^{2010}-M=2^{2010}-1\)
\(M=2^{2010}-2^{2010}+1\)
\(M=1\)
Đặt \(M=2^{2010}-A\)
Ta có:
\(A=2^{2009}+2^{2008}+...+2^1+2^0\)
\(\Rightarrow2A=2^{2010}+2^{2009}+...+2^2+2^1\)
\(\Rightarrow2A-A=\left(2^{2010}+2^{2009}+...+2^2+2^1\right)-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(\Rightarrow A=2^{2010}-1\)
\(\Rightarrow M=2^{2010}-\left(2^{2010}-1\right)\)
\(\Rightarrow M=\left(2^{2010}-2^{2010}\right)+1\)
\(\Rightarrow M=1\)
Đặt N = 22009 + 22008 + 22007 +......+ 21 + 20
2N = 22010 + 22009 + 22008 +.....+ 22 + 21
2N - N = 22010 - 20
=> N = 22010 - 1
=> M = 22010 - (22010 - 1)
=> M = 22010 - 22010 + 1
=> M = 1
\(T=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(T=2^{2010}-\left(2^0+2^1+...+2^{2008}+2^{2009}\right)\)
Đặt: \(A=2^0+2^1+....+2^{2008}+2^{2009}\)
\(2A=2\left(2^0+2^1+...+2^{2008}+2^{2009}\right)\)
\(2A=2^1+2^2+....+2^{2009}+2^{2010}\)
\(2A-A=\left(2^1+2^2+...+2^{2009}+2^{2010}\right)-\left(2^0+2^1+....+2^{2008}+2^{2009}\right)\)\(A=2^{2010}-1\)
Thay \(A\) vào \(T\) ta có:
\(T=2^{2010}-2^{2010}+1=1\)