K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(N=2^0+2^1+...+2^{2008}+2^{2009}\)

Suy ra: \(M=2^{2010}-N\)

Ta có: \(N=2^0+2^1+...+2^{2008}+2^{2009}\)

\(\Leftrightarrow2N=2+2^2+...+2^{2009}+2^{2010}\)

\(\Leftrightarrow N=2^{2010}-1\)

\(M=2^{2010}-N=2^{2010}-2^{2010}+1=1\)

12 tháng 9 2015

Đặt N = 22009 + 22008 + 22007 +......+ 21 + 20

2N = 22010 + 22009 + 22008 +.....+ 22 + 21

2N - N = 22010 - 20

=> N = 22010 - 1

=> M = 22010 - (22010 - 1)

=> M = 22010 - 22010 + 1

=> M = 1 

5 tháng 7 2015

Đặt N=22009+22008+...+1

=>2N=22010+22009+...+2

=>2N-N=(22010+22009+...+2)-(22009+22008+...+1)

=>N=22010-1

Mà M=22010-N=22010-(22010-1)=1

Ác Mộng trả lời đúng rùi. **** thui

8 tháng 8 2019

Đặt \(A=2^{2009}+2^{2008}+...+2^1+2^0\)

Ta có : \(2A=2^{2010}+2^{2009}+...+2^2+2^1\)

\(\Rightarrow2A-A=2^{2010}-2^0\Rightarrow A=2^{2010}-1\)

Do đó : \(M=2^{2010}-A=2^{2010}-\left[2^{2010}-1\right]=1\)

8 tháng 8 2019

\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(2^{2010}-M=2^{2009}+2^{2008}+...+2+1\)

\(2\left(2^{2010}-M\right)=2\left(2^{2009}+2^{2008}+...+2+1\right)\)

\(2\left(2^{2010}-M\right)=2^{2010}+2^{2009}+...+2^2+2\)

\(2\left(2^{2010}-M\right)-M=\left(2^{2010}+2^{2009}+...+4+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)

\(2^{2010}-M=2^{2010}+2^{2009}+...+4+2-2^{2009}-2^{2008}-...-2-1\)

\(2^{2010}-M=2^{2010}-1\)

=> M = 1

Đặt A = 22009 + 22008 + ... + 21 + 20

2A = 22010 + 22009 + ... + 22 + 21

2A - A = (22010 + 22009 + ... + 22 + 21) - (22009 + 22008 + ... + 21 + 20)

A = 22010 - 20

 A = 22010 - 1

=> 22010 - (22009 + 22008 + ... + 21 + 20)

= 22010 - (22010 - 1)

= 22010 - 22010 + 1

= 1

22 tháng 7 2016

Đặt A = 22009 + 22008 + ... + 21 + 20

2A = 22010 + 22009 + ... + 22 + 21

2A - A = (22010 + 22009 + ... + 22 + 21) - (22009 + 22008 + ... + 21 + 20)

A = 22010 - 20

 A = 22010 - 1

=> 22010 - (22009 + 22008 + ... + 21 + 20)

= 22010 - (22010 - 1)

= 22010 - 22010 + 1

= 1

17 tháng 9 2016

\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(2^{2010}-M=1+2+2^2+...+2^{2008}+2^{2009}\) 

\(2\left(2^{2010}-M\right)=2+2^2+2^3+...+2^{2009}+2^{2010}\)

\(2\left(2^{2010}-M\right)-\left(2^{2010}-M\right)=\left(2+2^2+2^3+...+2^{2009}+2^{2010}\right)-\left(1+2+2^2+...+2^{2008}+2^{2009}\right)\)

\(2^{2010}-M=2^{2010}-1\)

\(M=2^{2010}-2^{2010}+1\)

\(M=1\)

17 tháng 9 2016

Đặt \(M=2^{2010}-A\)

Ta có:

\(A=2^{2009}+2^{2008}+...+2^1+2^0\)

\(\Rightarrow2A=2^{2010}+2^{2009}+...+2^2+2^1\)

\(\Rightarrow2A-A=\left(2^{2010}+2^{2009}+...+2^2+2^1\right)-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(\Rightarrow A=2^{2010}-1\)

\(\Rightarrow M=2^{2010}-\left(2^{2010}-1\right)\)

\(\Rightarrow M=\left(2^{2010}-2^{2010}\right)+1\)

\(\Rightarrow M=1\)

20 tháng 10 2018

\(M=2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\)

\(-M=-\left(2^{2010}-2^{2009}-2^{2008}-...-2^1-2^0\right)\)

\(-M=2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\)

\(-2M=2.\left(2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(-2M=2^{2011}+2^{2010}+2^{2009}+...+2^2+2^1\)

\(-M=2^{2011}+2^{2010}+...+2^2+2^1-\left(2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(-M=2^{2011}-1=>M=-2^{2011}+1\)

20 tháng 10 2018

tại sao lại có dấu ''-'' vậy bạn mình không hiểu lắm.

19 tháng 8 2016

\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)

\(2^{2010}-M=2^{2009}+2^{2008}+...+2^1+2^0\)

\(2\left(2^{2010}-M\right)=2^1+2^2+....+2^{2009}+2^{2010}\)

\(2\left(2^{2010}-M\right)-\left(2^{2010}-M\right)=\left(2^1+2^2+....+2^{2009}+2^{2010}\right)-\left(2^0+2^1+...+2^{2008}+2^{2009}\right)\)

\(2^{2010}-M=2^{2010}-1\)

\(M=2^{2010}-2^{2010}+1\)

\(M=1\)

19 tháng 8 2016

M=22010-(22009+22008+22007+...+21+20)

M=22010-22009-22008-22007-...-21-20

=>2M=22011-22010-22009-22008-...-22-21

=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)

=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20

=22011-22010-22010+20

=22011-2.22010+1

=22011-22011+1

=1

                                        Vậy M=1

4 tháng 9 2018

Đặt M = 2^2010 - A

\(2A=2+2^2+...+2^{2010}\)

\(2A-A=\left(2+2^2+...+2^{2010}\right)-\left(1+2+...+2^{2009}\right)\)

\(A=2^{2010}-1\)

\(\Rightarrow M=2^{2010}-2^{2010}+1\)

\(\Rightarrow M=1\)

Vậy,.............

4 tháng 9 2018

\(M=2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(\Rightarrow2M=2^{2011}-2^{2010}-2^{2009}-...-2^2-2\)

\(\Rightarrow2M-M=2^{2011}-2^{2010}-1=2^{2010-1}\)