K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

A = {10; 12; 14; 16; 18; 20}

B = {8; 9; 10; 11; 12; 13; 14; 15}

Vậy \(A \cup B\) = {8; 9; 10; 11; 12; 13; 14; 15; 16; 18; 20}

Đáp án A.

A = {10;12;14;16;18;20}

B = {8;9;10;11;12;13;14;15}

AB = {10;12;14}

Chọn C.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Không gian mẫu là các tấm thẻ được đánh số nên nó gồm 15 phần tử, ký hiệu \(\Omega  = \left\{ {1;2;3;...;15} \right\}\)

b) A là biến cố “Số ghi trên tấm thẻ nhỏ hơn 7” nên \(A = \left\{ {1;2;3;4;5;6} \right\}\)

B là biến cố “Số ghi trên tấm thẻ là số nguyên tố” nên \(B = \left\{ {2;3;5;7;11;13} \right\}\)

\(A \cup B = \left\{ {1;2;3;4;5;6;7;11;13} \right\}\)

\(AB = \left\{ {2;3;5} \right\}\)

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 8 2023

a) Không gian mẫu là tập hợp các số từ 1 đến 25, được ký hiệu là Ω = 1,2,3,…,25.

b) Biến cố P là tập hợp các số chia hết cho 4, được ký hiệu là P = {4,8,12,16,20,24}.

Biến cố Q là tập hợp các số chia hết cho 6, được ký hiệu là Q = {6,12,18,24}.

Biến cố S là giao của hai biến cố P và Q, nghĩa là các số vừa chia hết cho 4 và vừa chia hết cho 6, được ký hiệu là S = P ∩ Q = {12,24}.

Vậy P, Q và S lần lượt là các tập con của không gian mẫu Ω.

a: Ω={1;2;3;...;25}

n(Ω)=25

b: S=PQ là số ghi trên tấm thẻ vừa chia hết cho 4 vừa chia hết cho 6

P={4;8;12;16;20;24}

Q={6;12;18;24}

S={12;24}

Biến cố P,Q,S lần lượt là các tập hợp con của không gian mẫu

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

A = {1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60}

B = {1; 2; 3; 4; 6; 8; 12; 16; 24; 48}

\( \Rightarrow \) AB = {1; 2; 3; 4; 12}

Ta có \(P\left( A \right) = \frac{{12}}{{60}} = \frac{1}{5};P\left( B \right) = \frac{{10}}{{60}} = \frac{1}{6};P\left( {AB} \right) = \frac{5}{{60}} = \frac{1}{{12}}\)

Mặt khác \(P\left( A \right).P\left( B \right) = \frac{1}{5}.\frac{1}{6} = \frac{1}{{30}}\)

Vì \(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) nên hai biến cố A và B không độc lập.

22 tháng 8 2023

Mô tả các biến cố như sau:

`A = {2, 4}` (Thẻ lấy ra lần thứ nhất ghi số chẵn)
`B = {2, 4}` (Thẻ lấy ra lần thứ hai ghi số chẵn)
`C = {2, 4}` (Tích các số ghi trên hai thẻ lấy ra là số chẵn)

$HaNa$

22 tháng 8 2023

THAM KHẢO:

A = {(2;1);(2;2);(2;3);(2;4);(2;5);(4;1);(4;2);(4;3);(4;4);(4;5)}

B = {(1;2);(2;2);(3;2);(4;2);(5;2);(1;4);(2;4);(3;4);(4;4);(5;4)}

C = {(1;2);(1;4);(2;1);(2;2);(2;3);(2;4);(2;5);(3;2);(3;4);(4;1);(4;2);(4;3);(4;4);(4;5); (5;2);(5;4)}

22 tháng 8 2023

a)

Biến cố AB: Số ghi trên thẻ được chọn chia hết cho cả 2 và 3.

b) Hai biến cố A và B không độc lập.

Điều này xảy ra vì nếu một số chia hết cho 2 thì nó có thể chia hết cho 3 (ví dụ: số 6), và ngược lại, nếu một số chia hết cho 3 thì nó cũng có thể chia hết cho 2 (ví dụ: số 6). => Do đó, kết quả của biến cố A ảnh hưởng đến biến cố B và ngược lại, không đảm bảo tính độc lập giữa hai biến cố này.

$HaNa$

22 tháng 8 2023

a) Tập hợp mô tả biến cố AB:
`AB: { (1, 5), (2, 4), (3, 3) }`

P(AB) = số phần tử trong AB / số phần tử trong không gian mẫu
`P(AB) = 3 / (3 * 5) = 3/15 = 1/5`

b) Một biến cố khác rỗng và xung khắc với cả hai biến cố A và B là biến cố "Tổng các số ghi trên 2 thẻ lớn hơn 6".

$HaNa$

6 tháng 12 2021

1.

\(\left|\Omega\right|=15\)

a, \(P\left(A\right)=\dfrac{7}{15}\)

b, \(P\left(B\right)=\dfrac{2}{5}\)

c, \(P\left(C\right)=\dfrac{3}{5}\)

6 tháng 12 2021

2.

\(\left|\Omega\right|=C^5_{18}\)

a, \(\left|\Omega_A\right|=C^5_5+C^5_6+C^5_7\)

\(P\left(B\right)=\dfrac{C^5_5+C^5_6+C^5_7}{C^5_{18}}=\dfrac{1}{306}\)

b, TH1: 2 bi đỏ, 1 bi xanh, 2 bi vàng

\(\Rightarrow\) Có \(C^2_6.C^1_5.C^2_7\) cách lấy.

TH2: 2 bi đỏ, 2 bi xanh, 1 bi vàng

\(\Rightarrow\) Có \(C^2_6.C^2_5.C^1_7\) cách lấy.

\(\Rightarrow\left|\Omega_C\right|=C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7\)

\(\Rightarrow P\left(C\right)=\dfrac{C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7}{C^5_{18}}=\dfrac{10}{51}\)

c, \(\overline{D}\) là biến cố không lấy ra bi xanh nào.

\(\left|\Omega_{\overline{D}}\right|=C^5_{13}\)

\(\Rightarrow P\left(\overline{D}\right)=\dfrac{C^5_{13}}{C^5_{18}}=\dfrac{143}{952}\)

\(\Rightarrow P\left(D\right)=1-\dfrac{143}{952}=\dfrac{809}{952}\)