K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017
Mk gửi nhầm nha
16 tháng 8 2016

\(-2\left(\sqrt{1+x}+\sqrt{1-x}\right)+7=\sqrt{\left(5-2x\right)\left(5+2x\right)}-2\sqrt{1-x^2}\)

ĐKCĐ: \(-1\le x\le1\)

\(\Leftrightarrow2\left(\sqrt{\left(1-x\right)}-1\right)\left(\sqrt{1+x}-1\right)+5-\sqrt{\left(5-2x\right)\left(5+2x\right)}=0\)

 \(\Leftrightarrow2x^2\left[\frac{2}{5+\sqrt{\left(5-2x\right)\left(5+2x\right)}}-\frac{1}{\left(\sqrt{1-x}+1\right)\left(\sqrt{1+x}+1\right)}\right]\)

Đặt: \(A=\frac{2}{5+\sqrt{\left(5-2x\right)\left(5+2x\right)}}-\frac{1}{\left(\sqrt{1-x}+1\right)\left(\sqrt{1+x}+1\right)}\)

Có: \(A\le\frac{2}{5+\sqrt{\left(5-2\right)\left(5-2\right)}}-\frac{1}{\sqrt{1-x^2}+1+\sqrt{1-x}+\sqrt{1+x}}< \frac{2}{5+3}-\frac{1}{1+1+2}=0\)

\(\Rightarrow x=0\) là nghiệm của pt

khocroigianroi

16 tháng 8 2016

x=0. Ai giúp với gianroi
 

17 tháng 8 2020

mình nghĩ sửa đề bài là  \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\) 

NV
17 tháng 7 2020

Đề là \(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-3\right)\sqrt{4-\sqrt{15}}\)

Hay \(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\) bạn?

Như bạn ghi thì ko có gì đặc biệt để tính ra kết quả đẹp đâu

20 tháng 3 2018

a. (x√13+√5)(√7−x√3)=0(x13+5)(7−x3)=0

⇔x√13+√5=0⇔x13+5=0 hoặc √7−x√3=07−x3=0

+ x√13+√5=0⇔x=−√5√13≈−0,62x13+5=0⇔x=−513≈−0,62

+ √7−x√3=0⇔x=√7√3≈1,537−x3=0⇔x=73≈1,53

Vậy phương trình có nghiệm x = -0,62 hoặc x = 1,53.

b. (x√2,7−1,54)(√1,02+x√3,1)=0(x2,7−1,54)(1,02+x3,1)=0

⇔x√2,7−1,54=0⇔x2,7−1,54=0 hoặc √1,02+x√3,1=01,02+x3,1=0

+ x√2,7−1,54=0⇔x=1,54√2,7≈0,94x2,7−1,54=0⇔x=1,542,7≈0,94

+ √1.02+x√3,1=0⇔x=−√1,02√3,1≈−0,571.02+x3,1=0⇔x=−1,023,1≈−0,57

Vậy phương trình có nghiệm x = 0,94 hoặc x = -0,57


6 tháng 4 2019

Cái này là toán lớp 9 chứ.

a)
ĐKXĐ : \(x\ne\pm4\)

\(A=\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{\sqrt{x}+2}{x-4}\right):\left(\frac{\left(\sqrt{x}+2\right)^2}{x-4}-\frac{\left(\sqrt{x}-2\right)^2}{x-4}-\frac{2\sqrt{x}}{x-4}\right)\)

\(=\left(\frac{x-\sqrt{x}+7+\sqrt{x}+2}{x-4}\right):\left(\frac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-2\sqrt{x}}{x-4}\right)\)

\(=\frac{x+9}{x-4}\cdot\frac{x-4}{6\sqrt{x}}=\frac{x+9}{6\sqrt{x}}\)

b)

Ta có

\(x+9-6\sqrt{x}=\left(\sqrt{x}-3\right)^2\ge0\)
\(\Rightarrow x+9\ge6\sqrt{x}\)

\(\Rightarrow\frac{x+9}{6\sqrt{x}}\ge1\)

\(\Leftrightarrow A\ge1\)

\(\Leftrightarrow\frac{1}{A}\le1\)

\(\Rightarrow A\ge\frac{1}{A}\)