K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
\(\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}=\sqrt{(\sqrt{x+2}+1)^2}+\sqrt{(\sqrt{1-x^2}+1)^2}\)

\(=|\sqrt{x+2}+1|+|\sqrt{1-x^2}+1|=\sqrt{x+2}+\sqrt{1-x^2}+2\)

ĐKXĐ: \(\left\{\begin{matrix} x+2\geq 0\\ 1-x^2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ -1\leq x\leq 1\end{matrix}\right.\Leftrightarrow -1\leq x\leq 1\)

a: ĐKXĐ: x\(\in\)R\{3}

b: ĐKXĐ: \(\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)

15 tháng 1 2023

`@` H/s xác định `<=>{(x+2 >= 0),(2-x >= 0):}<=>{(x >= -2),(x <= 2):}<=>-2 <= x <= 2`

   `=>TXĐ: D=[-2;2]`

`@-2 <= x <= 2`

`<=>{(0 <= x+2 <= 4),(2 >= -x >= -2):}`

`<=>{(0 <= x+2 <= 4),(4 >= 2-x >= 0):}`

`<=>{(0 <= \sqrt{x+2} <= 2),(2 >= \sqrt{2-x} >= 0):}`

   `=>TGT` là `[0;2]`

15 tháng 1 2023

\(y=\sqrt{x+2}+\sqrt{2-x}\)

y có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x+2>0\\2-x>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x>2\end{matrix}\right.\)

TXD D = \(\left(2;+\infty\right)\)

NV
23 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

NV
7 tháng 11 2019

ĐKXĐ:

\(\left\{{}\begin{matrix}x+1\ge0\\x^2-2\ge0\\5-x>0\\x^2-2x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\\left|x\right|\ge\sqrt{2}\\x< 5\\x\ne-1;x\ne3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{2}\le x< 5\\x\ne3\end{matrix}\right.\)

NV
2 tháng 11 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x+3-2\sqrt{x+2}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left(\sqrt{x+2}-1\right)^2\ge0\left(\text{luôn đúng}\right)\end{matrix}\right.\)

Vậy TXĐ của hàm số là: \(D=[-2;+\infty)\)

12 tháng 8 2018

TXĐ: \(x\ge0\)

NV
4 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x+2\ge0\\1-x^2\ge0\end{matrix}\right.\) \(\Rightarrow-1\le x\le1\)

b. \(D=R\)

27 tháng 11 2023

\(y=\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)

\(=\sqrt{x+2+2\sqrt{x+2}+1}+\sqrt{1-x^2+2\cdot\sqrt{1-x^2}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{x+2}+1\right)^2}+\sqrt{\left(\sqrt{1-x^2}+1\right)^2}\)

\(=\left|\sqrt{x+2}+1\right|+\left|\sqrt{1-x^2}+1\right|\)

ĐKXĐ: \(\left\{{}\begin{matrix}x+2>=0\\1-x^2>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-2\\x^2< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\-1< =x< =1\end{matrix}\right.\)

=>-1<=x<=1

TXĐ là D=[-1;1]