K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{x^2+4x+5}=1\)

\(\Rightarrow\sqrt{x^2+4x+5}=\sqrt{1}\)

\(\Rightarrow x^2+4x+5=1\)

\(\Rightarrow x.x+2x+2x+4=0\left(\text{cùng bớt đi 1}\right)\)

\(\Rightarrow x\left(2+x\right)+2\left(x+2\right)=0\)

\(\Rightarrow\left(2+x\right)\left(2+x\right)=0\)

\(\Rightarrow\left(2+x\right)^2=0^2\)

\(\Rightarrow2+x=0\)

\(\Rightarrow x=0-2\)

\(\Rightarrow x=-2\)

20 tháng 12 2018

\(\sqrt{x^2+4x+5}=1\)

\(\Rightarrow\sqrt{x^2+4x+5}=\sqrt{1}\)

\(\Rightarrow x^2+4x+5=1\)

Ta có : \(3x^2+5x+14=5\left(x+1\right)\sqrt{4x-1}\)

\(\Leftrightarrow\left(3x^2+5x+14\right)^2=\left[5\left(x+1\right)\sqrt{4x-1}\right]^2\)

\(\Leftrightarrow9x^4+25x^2+196+2\left(3x^2.5x+5x.14+3x^2.14\right)=25.\left(x+1\right)^2\left(4x-1\right)\)

\(\Leftrightarrow9x^4+25x^2+196+2\left(15x^3+70x+42x^2\right)=25\left(x+1\right)^2\left(4x-1\right)\)

\(\Leftrightarrow9x^4+25x^2+196+30x^3+140x+84x^2=25\left(x+1\right)^2\left(4x-1\right)\)

\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=25\left(x^2+2x+1\right)\left(4x-1\right)\)

\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=\left(25x^2+50x+25\right)\left(4x-1\right)\)

\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=\left(25x^2+50x+25\right)\left(4x-1\right)\)

\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=100x^3+200x^2+100x-25x^2-50x-25\)

\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=100x^3+175x^2+50x-25\)

Đến đây chuyển vế sang giải nhé mệt quá 

14 tháng 7 2018

b) Ta có pt \(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

<=>  \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\Leftrightarrow\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|=1\)

Mà \(\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|\ge\left|3-\sqrt{x-1}+\sqrt{x-1}-2\right|=1\)

...

14 tháng 7 2018

a) Đặt \(\sqrt{x^2-4x-5}=a\left(a\ge0\right)\)

Ta có pt \(\Leftrightarrow2a^2-3a-2=0\Leftrightarrow\left(a-2\right)\left(2a+1\right)=0\)

...

17 tháng 7 2016

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)

Ta xét 3 trường hợp : 

1. Với \(x< 1\) , pt trên trở thành : \(1-x+2-x=3\Leftrightarrow2x=0\Leftrightarrow x=0\)(nhận)

2. Với \(1\le x\le2\), pt trên trở thành : \(x-1+2-x=3\Leftrightarrow1=3\)(vô lý - loại)

3. Với \(x>2\) , pt trên trở thành : \(x-1+x-2=3\Leftrightarrow2x=6\Leftrightarrow x=3\)(nhận)

Vậy tập nghiệm của phương trình : \(S=\left\{0;3\right\}\)

17 tháng 7 2016

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow x-1+x-2=3\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=2\)

NV
4 tháng 4 2021

Đặt \(x^2-4x+5=t\ge1\)

\(\Rightarrow\dfrac{5}{t}-\left(t-5\right)-1=0\)

\(\Leftrightarrow-t^2+4t+5=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=5\end{matrix}\right.\)

\(\Rightarrow x^2-4x+5=5\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

19 tháng 7 2019

\(\sqrt{4x^2-4x+1}=\sqrt{\left(2x-1\right)}=\left|2x-1\right|=-\left(2x-1\right)\Rightarrow2x-1\le0\Leftrightarrow x\le\frac{1}{2}\)\(\sqrt{4x^2-1}-2\sqrt{2x+1}=0\Leftrightarrow\sqrt{2x+1}\left(\sqrt{2x-1}-2\right)=0\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\2x-1=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)

30 tháng 6 2019

a, 3x + 6x - 5 = 17x

9x - 5 = 17x

9x - 17x = 5

- 8x = 5

x = -5/8

b, 8(4x + 2 ) = 20x + 11x

32x + 16 = 31x

32x - 31x = -16

x = -16

c, \(\sqrt{x}^2\) - 2x + 1 = 0

\(\left(\sqrt{x}\right)^2\) - 2x + 1 = 0

\(\left(\sqrt{x}+1\right)^2\) = 0

\(\sqrt{x+1}\) = 0

x + 1 = 0

x = -1

Đúng đó bạn !