Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
học lớp 6 mà đã phải giải bài phương trình khó thế này khổ nha
ta đặt \(\sqrt[3]{7x+1}=a;-\sqrt[3]{x^2-x-8}=b;\sqrt[3]{x^2-8x-1}=c\)
ta có \(a^3+b^3+c^3=7x+1-x^2+x+8+x^2-8x-1=8\)
từ phương trình ta có \(a+b+c=2\Rightarrow\left(a+b+c\right)^3=8\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=8\)
=> \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
tự thay vào và giải tiếp nhé hình như làm 3 trương hợp thì phải
\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)
\(\Rightarrow\sqrt[3]{7x+1}+\sqrt[3]{x^2-8x-1}=2+\sqrt[3]{x^2-x-8}\)
Lập phương 2 vế lên ta được: \(\left(7x+1\right)\left(x^2-8x-1\right)=8\left(x^2-8x-8\right)\)
\(\Rightarrow\left(x-9\right)\left(x-1\right)\left(x+1\right)=0\)
\(2.10x^2+3x+1=\left(1+6x\right)\sqrt{x^2+3}\)
\(\Rightarrow x^2+3-\left(1+6x\right)\sqrt{x^2+3}+9x^2+3x-2=0\)
Nghiệm hơi xấu :(
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
\(ĐK:x\in R\)
Đặt \(x^2-2x=a\), PTTT:
\(-a+\sqrt{6a+7}=0\\ \Leftrightarrow\sqrt{6a+7}=a\\ \Leftrightarrow a^2-6a-7=0\\ \Leftrightarrow\left[{}\begin{matrix}a=7\\a=-1\left(loại.do.a=\sqrt{6a+7}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow a=7\\ \Leftrightarrow x^2-2x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)
\(a,\left(x^2-4x+11\right)\left(x^4-8x^2+21\right)=35\)
Phương trình trên tương đương với:
\(\left[\left(x-2\right)^2+7\right]\left[\left(x^2-4\right)^2+5\right]=35\left(1\right)\)
Do: \(\hept{\begin{cases}\left(x-2\right)^2+7\ge7\forall x\\\left(x^2-4\right)^2+5\ge5\forall x\end{cases}}\Rightarrow\left[\left(x+2\right)^2+7\right]\left[\left(x^2+4\right)^2+5\right]\ge35\forall x\)
Nên: \(\left(1\right)\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2+7=7\\\left(x^2-4\right)^2+5=5\end{cases}\Leftrightarrow}x=2\)
Vậy ..................................
\(b,\sqrt{x}+\sqrt{1-x}+\sqrt{x\left(1-x\right)}=1\)
\(Đkxđ:0\le x\le1\) Đặt: \(0< a=\sqrt{x}+\sqrt{1-x}\Rightarrow\frac{a^2-1}{2}=\sqrt{x\left(1-x\right)}\)
\(+)\) Phương trình mới là: \(a+\frac{a^2-1}{2}=1\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\)
\(\Leftrightarrow a=\left\{-3;1\right\}\Rightarrow a=1>0\)
\(\sqrt{x}+\sqrt{1-x}=1\)
\(+)\) Nếu \(a=1\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=1\Leftrightarrow\sqrt{x\left(1-x\right)}=0\)
\(\Rightarrow x=\left\{0;1\right\}\left(tm\right)\)
Vậy .............................
\(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)
<=> \(\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)
<=> \(\left|x-4\right|+\left|x+2\right|=0\)
<=> \(\left|4-x\right|+\left|x+2\right|=0\)
Ta thấy: \(\left|4-x\right|+\left|x+2\right|\ge\left|4-x+x+2\right|=\left|6\right|=6\)
mà \(\left|4-x\right|+\left|x+2\right|=0\)
=> pt vô nghiệm