Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\)\(\left(1^3-1000\right).\left(2^3-1000\right)\)\(.....\left(2018^3-1000\right)\)
\(A=\left(1^3-1000\right).\left(2^3-1000\right)...\left(10^3-1000\right)...\left(2018^3-1000\right)\)
\(A=\left(1^3-1000\right).\left(2^3-1000\right)...0...\left(2018^3-1000\right)\)
\(A=0\)
~~~Hok tốt~~~
\(\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3-\sqrt{5}\right|=3-\sqrt{5}\)
\(\sqrt{\left(\sqrt{3-\sqrt{4}}\right)^2}=\left|\sqrt{3-\sqrt{4}}\right|=\sqrt{3-\sqrt{4}}\)
\(\sqrt{\left(7-\sqrt{34}\right)^2}=\left|7-\sqrt{34}\right|=7-\sqrt{34}\)
\(-\left|1,7-x\right|-\dfrac{5}{3}=\dfrac{2}{3}\\ \Rightarrow\left|1,7-x\right|=-\dfrac{5}{3}-\dfrac{2}{3}=-\dfrac{7}{3}\left(l\right)\)
Vậy không có giá trị x thoả mãn
\(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\)
\(\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\)
/ x+y+z/ \(\ge0\)
Mà M =0
\(x-\sqrt{2}=0=>x=\sqrt{2}\)
\(y+\sqrt{2}=0\Rightarrow y=-\sqrt{2}\)
x+y+z = 0 => z= -(x+y) =-( \(\sqrt{2}-\sqrt{2}\)') =0
\(B=\left(\frac{55}{3}:15+\frac{26}{3}.\frac{7}{2}\right):\left[\left(\frac{37}{3}+\frac{62}{7}\right)-\frac{7}{8}\right]:\frac{1704}{445}\\ B=\left(\frac{11}{9}+\frac{91}{3}\right):\left(\frac{445}{21}-\frac{7}{8}\right):\frac{1704}{445}\\ B=\frac{284}{9}:\frac{2621}{126}:\frac{1704}{445}\\ B=\frac{35784}{23589}:\frac{1704}{445}\\ B=\frac{3115}{7863}\)
a) \(\sqrt{16}+\sqrt{225}.\sqrt{9}=4+15.3=4+45=49\)
b) \(\sqrt{\dfrac{10000}{400}}+\sqrt{\left(-3\right)^2}.\sqrt{6^4}=\dfrac{100}{20}+\sqrt{9}.\sqrt{36^2}=5+3.36=5+108=113\)
a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}-\left(\sqrt{7}\right)^2=\sqrt{25}+\sqrt{25}-\sqrt{9}-\sqrt{9}\)
\(=5+5-3-3\)
\(=4\)
c) \(\sqrt{\left(-10\right)^2}+10.\left(-\sqrt{5}\right)^2=\sqrt{100}+10.5\)
\(=10+10.5\)
\(=10+50\)
\(=60\)
Học tốt nha^^
đề hỏi tìm gì mình không biết